| 研究生: |
周芳汝 Chou, Fang-Ru |
|---|---|
| 論文名稱: |
印刷電路板製造成本診斷與降低策略—銅循環導向物質流成本會計工具開發與分析應用 Diagnosis of Cost Reduction Potential for Printed Circuit Board Manufacturers by Recycling Copper-Tool Development and Analysis with Material Flow Cost Accounting |
| 指導教授: |
陳必晟
Chen, Pi-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 158 |
| 中文關鍵詞: | 銅 、印刷電路板 、廠內回收 、物質流分析 、物質流成本會計 |
| 外文關鍵詞: | copper, Printed circuit boards, In-plant recycling, Material Flow Analysis, Material Flow Cost Accounting |
| 相關次數: | 點閱:137 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來受到低碳經濟影響,全球對銅資源需求量逐年增加,預計在2050年銅需求量將超過銅礦量,而台灣銅資源仰賴進口,造成銅資源深受國際供需影響,此將導致台灣未來銅資源取得存在潛在風險,故台灣已把銅列為關鍵物料優先進行管理,並欲採循環經濟的方式以提供銅資源長期穩定的來源。然在台灣2020年工業廢棄物流向中,含銅之事業廢棄物平均回收率為60.31 %,顯示仍有部分銅資源流失於環境。因此本研究以印刷電路板製造業為例,實施銅資源廠內回收以提高銅資源回收率。
本研究採用物質流分析了解目前印刷電路板製造業銅資源使用情形,以及分析具潛力之銅回收點位,並透過物質流成本會計方法建立成本效益分析模型,以進一步評估對銅資源相關性較高之程序實施廠內銅回收後,對工廠經濟及廢棄物管理效益的影響。而本研究使用兩種含銅廢棄物回收方案對四間工廠進行廠內銅回收成本效益分析,方案一依各項含銅廢棄物之總量排定回收順序,方案二依不同量化中心之含銅廢棄物總量排定回收順序,同時兩方案亦各設計八種情境(假設含銅廢棄物回收率各為0 %、20 %、40 %、60 %、80 %、90 %、95 %、100 %),以觀察不同情境下兩方案對工廠的影響。另本研究為評估銅資源廠內回收之最大效益,假設多數含銅廢棄物中的銅均可全數回收,且銅回收後再製成的再利用產品將對外銷售。
研究結果顯示在廢棄物管理效益上,各工廠在實施兩方案後,實際含銅廢棄物回收率可在99.4 %以上、實際負產品(銅)回收率可在95.2 %以上;在經濟效益上,各情境下兩方案之廢棄物隱藏成本主要受到材料損失成本影響,且其成本占比至少為80.3 %,而各工廠所需投入之再利用處理成本是由材料損失成本轉移而來,且受到含銅廢棄物中銅重量及銅來源影響,四家業者之再利用處理投入成本最高在情境八為346 ~ 5,178萬元不等,另外各工廠之再利用產品價值最高可達116 ~ 863萬元不等。而綜觀各工廠實施兩方案後在各情境之經濟及廢棄物管理效益表現,方案二對多數工廠而言為較佳方案。故本研究所建立印刷電路板製造業廠內銅回收之物質流成本會計分析模型,可協助工廠進行效益分析並提供較佳廠內銅回收方案之建議,此亦可作為政府或產業未來推動銅資源在台循環之參考。
Taiwan's government has been promoting circular economy in recent years and hopes to sustainably manage copper resources and reduce the potential risks of copper resource. However, there is still a problem of losing copper resources through the flows of industrial wastes in Taiwan. Therefore, this study has taken the printed circuit board manufacturing industry as a subject to evaluate the benefit of improving in-plant copper recycling. This study conducted a material flow analysis to analyze the utilization of copper resources and potential recycling sites in the printed circuit board manufacturing industry. Then, we analyzed the cost-benefit by a material flow cost accounting-based model for assessing the impact of implementing copper recycling in-plant on the plant's economic and waste management benefits. Besides, we examined two recycling programs for four plants to compare eight scenarios’ impacts on cost savings.
The results show that after each plant implements in-plant copper recycling, both recycling programs can contribute to significant waste management benefit. Regarding economic benefit, the material loss costs mainly affected the waste hidden costs. Additionally, the copper weight of waste influenced the input cost of the recycling process and the value of recycled products. Finally, both benefits results showed recycling program 2 is the better choice for most plants. To conclude, this study establishes a material flow cost accounting analysis model for copper recycling in-plant in printed circuit boards manufacturing plants which assists plants in conducting benefit analysis, provides suggestions for optimal recycling programs, and further promotes copper resources circulation in Taiwan in the future.
Allesch, A., & Brunner, P. H. (2017). Material flow analysis as a tool to improve waste management systems: the case of Austria. Environmental Science & Technology, 51 (1), 540-551.Chicago.
Beynon-Davies, P. (2021). Understanding Digital Innovation. In Business Analysis and Design (pp. 271-292). Palgrave Macmillan, Cham.
Brunner, P. H. (2012). Substance flow analysis: a key tool for effective resource management. Journal of Industrial Ecology, 16 (3), 293-295.
Brunner, P. H., & Rechberger, H. (2016). Handbook of material flow analysis: For environmental, resource, and waste engineers. CRC press.
Buchert, M., Schüler, D., Bleher, D., & Programme des Nations Unies pour l'environnement. (2009). Critical metals for future sustainable technologies and their recycling potential. UNEP DTIE; Öko-Institut.
Cakir, O. (2006). Copper etching with cupric chloride and regeneration of waste etchant. journal of materials processing technology, 175 (1-3), 63-68.
Christ, K. L., & Burritt, R. L. (2016). ISO 14051: A new era for MFCA implementation and research. Revista de Contabilidad, 19(1), 1-9.
Corral-Marfil, J. A., Arimany-Serrat, N., Hitchen, E. L., & Viladecans-Riera, C. (2021). Recycling Technology Innovation as a Source of Competitive Advantage: The Sustainable and Circular Business Model of a Bicentennial Company. Sustainability, 13(14), 7723.
Dekamin, M., & Barmaki, M. (2019). Implementation of material flow cost accounting (MFCA) in soybean production. Journal of Cleaner Production, 210, 459-465.
Elshkaki, A., Graedel, T. E., Ciacci, L., & Reck, B. K. (2016). Copper demand, supply, and associated energy use to 2050. Global environmental change, 39, 305-315.Chicago.
European Commission (2022). Waste Framework Directive. Retrieved from https://environment.ec.europa.eu/topics/waste-and-recycling/waste-framework-directive_en.
European Commission(2018). Consolidated Text: Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives (Text with EEA Relevance). Retrieved from https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02008L0098-20180705&from=EN.
Gaustad, G., Krystofik, M., Bustamante, M., & Badami, K. (2018). Circular economy strategies for mitigating critical material supply issues. Resources, Conservation and Recycling, 135, 24-33.
Greenovate! europe. (2012). Guide to Resource Efficient Manufacturing. Greenovate! Europe. Retrieved from https://greenovate-europe.eu/wp-content/uploads/2020/06/Guide-to-resource-efficient-manufacturing_Remake.pdf.
Hagelüken, C., Lee-Shin, J. U., Carpentier, A., & Heron, C. (2016). The EU circular economy and its relevance to metal recycling. Recycling, 1 (2), 242-253.
Ho, J. Y., Ng, D. K., Wan, Y. K., & Andiappan, V. (2021). Synthesis of wastewater treatment plant based on minimal waste generation cost: A material flow cost accounting (MFCA) approach. Process Safety and Environmental Protection, 148, 559-578.
Hossain, M. U., Wu, Z., & Poon, C. S. (2017). Comparative environmental evaluation of construction waste management through different waste sorting systems in Hong Kong. Waste management, 69, 325-335.
International Organization for Standardization. (2011). Environmental management-Material flow cost accounting-General framework. ISO.
International Organization for Standardization. (2021). Environmental management-Material flow cost accounting-Guidance for phased implementation in organizations. ISO.
Kokubu, K., & Tachikawa, H. (2013). Material flow cost accounting: significance and practical approach. Handbook of sustainable engineering, 351-369.
Loibl, A., & Espinoza, L. A. T. (2021). Current challenges in copper recycling: aligning insights from material flow analysis with technological research developments and industry issues in Europe and North America. Resources, Conservation and Recycling, 169, 105462.
May, N., & Guenther, E. (2020). Shared benefit by Material Flow Cost Accounting in the food supply chain–The case of berry pomace as upcycled by-product of a black currant juice production. Journal of Cleaner Production, 245, 118946.
Nishitani, K., Kokubu, K., Wu, Q., Kitada, H., Guenther, E., & Guenther, T. (2022). Material flow cost accounting (MFCA) for the circular economy: An empirical study of the triadic relationship between MFCA, environmental performance, and the economic performance of Japanese companies. Journal of Environmental Management, 303, 114219.
Perkins, D. N., Drisse, M. N. B., Nxele, T., & Sly, P. D. (2014). E-waste: a global hazard. Annals of global health, 80 (4), 286-295.
Ruiz, L. A. L., Ramon, X. R., Mercedes, C. M. L., & Domingo, S. G. (2022). Multicriteria analysis of the environmental and economic performance of circularity strategies for concrete waste recycling in Spain. Waste Management, 144, 387-400.
Sue G., John D., & Jeannie G.(2016)Report on the Environmental Benefits of Recycling – 2016 edition. Bureau of International Recycling (BIR). Retrieved from https://cari-acir.org/wp-content/uploads/2016/09/BIR-Environmental-Report-2016.pdf.
Schlesinger, M. E., Sole, K. C., Davenport, W. G., & Alvear, G. R. (2021). Extractive metallurgy of copper. Elsevier.
Schmidt, M. (2008). The Sankey diagram in energy and material flow management: part II: methodology and current applications. Journal of industrial ecology, 12 (2), 173-185.
Schmidt, M. (2015). The interpretation and extension of Material Flow Cost Accounting (MFCA) in the context of environmental material flow analysis. Journal of Cleaner Production, 108, 1310-1319.
Sibley, S. F. (2011). Overview of flow studies for recycling metal commodities in the United States (pp. AA1-AA25). Reston, VA: US Department of the Interior, US Geological Survey.
Soulier, M., Pfaff, M., Goldmann, D., Walz, R., Geng, Y., Zhang, L., & Espinoza, L. A. T. (2018). The Chinese copper cycle: Tracing copper through the economy with dynamic substance flow and input-output analysis. Journal of Cleaner Production, 195, 435-447.
Tercero, L., Rostek, L., Loibl, A., & Stijepic, D. (2020). THE PROMISE AND LIMITS OF URBAN MINING. Fraunhofer-Gesellschaft. Retrieved from https://copperalliance.org/wp-content/uploads/2020/12/Urban-Mining-Webinar.pdf
The London Metal Exchange (n.d.). LME Copper Trading Day Summary. The London Metal Exchange. Retrieved from https://www.lme.com/Metals/Non-ferrous/LME-Copper#Trading+day+summary.
Van der Voet, E. (2002). Substance flow analysis methodology. A handbook of industrial ecology, 91-101.
Wan, Y. K., Ng, R. T., Ng, D. K., & Tan, R. R. (2015). Material flow cost accounting (MFCA)–based approach for prioritisation of waste recovery. Journal of Cleaner Production, 107, 602-614.
Watari, T., McLellan, B. C., Ogata, S., & Tezuka, T. (2018). Analysis of potential for critical metal resource constraints in the international energy agency’s long-term low-carbon energy scenarios. Minerals, 8 (4), 156.
Watari, T., Nansai, K., & Nakajima, K. (2021). Major metals demand, supply, and environmental impacts to 2100: A critical review. Resources, Conservation and Recycling, 164, 105107.
Wen, Z., & Meng, X. (2015). Quantitative assessment of industrial symbiosis for the promotion of circular economy: a case study of the printed circuit boards industry in China's Suzhou New District. Journal of Cleaner Production, 90, 211-219.
Weyand, A., Rommel, C., Zeulner, J., Sossenheimer, J., Weigold, M., & Abele, E. (2021). Method to increase resource efficiency in production with the use of MFCA. Procedia CIRP, 98, 264-269.
Ylä-Mella, J., & Pongrácz, E. (2016). Drivers and constraints of critical materials recycling: The case of indium. Resources, 5 (4), 34.
工研院產科國際所(2021)。2021Q2台灣PCB產銷調查及營運報告分析。電路板季刊,第93期,94-103頁。
中原捷雄(2020)。2019全球PCB百大排行與行業動態。取自https://www.gogofinder.com.tw/gogofinderReader/index.php?bid=9471&p=310#page/310。
王信富(2018)。製程銅廢液回收技術與發展。取自https://www.itis.org.tw/NetReport/NetReport_Detail.aspx?rpno=957429182
王景弘、謝依錡、林憶樺、呂冠霖(2015)。產業導入物質流成本分析 (MFCA)指導手冊。臺北市:工業局。
台灣區金屬品冶製工業同業公會(2022)。倫敦金屬價格銅價。取自https://www.trmsa.org.tw/Metal.aspx?Co。
台灣電路板協會(2019)。【趨勢專欄】電路板產業 實現循環經濟關鍵。取自https://www.pcbshop.org/tw/mobile/articlesDetail.asp?serno=67。
台灣電路板協會(2019)。台灣電路板產業循環經濟策略發展藍圖。桃園市:台灣電路板協會。
台灣電路板協會(2021)。【市場資訊】2021 TPCA Show PCB關鍵資訊。取自https://www.tpca.org.tw/Message/MessageView?id=10297&mid=482。
行政院環保署(2003)。電子業事業廢棄物清理技術調查及處理成效評估。行政院環保署環保專案成果報告(編號:EPA-92-H102-02-123)。
行政院環保署(2017)。十大關鍵物料報告摘要。臺北市:行政院環保署。
行政院環保署(2020)。資源循環分析系統∣WIO資訊彙集。取自https://smmdb.epa.gov.tw/SMM/WebPage/Export.aspx。
行政院環保署(2022)。事業廢棄物申報及管理資訊系統∣公開查詢∣代碼查詢。取自https://waste.epa.gov.tw/RWD/Qry/。
行政院環保署(2022)。事業廢棄物申報及管理資訊系統∣申報查詢。取自https://waste1.epa.gov.tw/IWMS/default.htm。
行政院環保署(2022)。清除處理機構服務管理資訊系統∣廢棄物處理費用查詢。取自https://wcds.epa.gov.tw/WCDS/Anonymous/TreCostSearch.aspx。
林大鈞(2020)。循環經濟下廠內銅廢料的產品概況與趨勢剖析。取自https://mii.mirdc.org.tw/Report/Detail/849?menuid=9&docid=MDOC20200611002&cname=%28%E8%A9%95%29%E9%9D%9E%E9%90%B5%E9%87%91%E5%B1%AC%E8%88%87%E6%87%89%E7%94%A8-%E9%8A%85%E5%90%88%E9%87%91
姜金龍、徐金城、吳玉萍(2006)。再生銅的生命週期評價。蘭州理工大學學報,32(3),4-6。
財政部(2013)。歷年各業別之原物料耗用通常水準調查報告∣印刷電路板業。取自https://www.ntbsa.gov.tw/singlehtml/090f42aebcdc4785a6227b012db9951a?cntId=
cb7cf9f083a343eba1622433265e27b6。
財政部關務署(2022)。海關進出口統計∣貿易統計∣資料庫查詢∣綜合查詢。取自https://portal.sw.nat.gov.tw/APGA/GA30。
馬鴻文、李培群(2020)。物質流分析與循環經濟應用。載於黃宗煌(主編),台灣循環經濟發展論,財團法人現代財經基金會(頁243-274)。台北市:商訊文化。
陳良棟(2020)。台灣發展循環經濟的經驗與績效。載於黃宗煌(主編),台灣循環經濟發展論,財團法人現代財經基金會(頁511-533)。台北市:商訊文化。
黃文輝、陳安綺、王淑君、黃理御、范美桾(2019)。物質流成本分析案例彙編。臺北市:工業局。
經濟産業省(2009)。マテリアルフローコスト会計手法導入ガイド。取自https://www.jmac.co.jp/mfca/thinking/data/mfca_guide_ver3.pdf。
經濟部工業局(2022)。工業廢棄物清理與資源化資訊網∣廢棄物交換中心∣廢棄物成分特性資料查詢。取自https://proj.tgpf.org.tw/riw/wid/default.aspx。
經濟部工業局、財團法人台灣綠色生產力基金會(2009)。印刷電路板業資源化應用技術手冊。臺北市:工業局。
經濟部統計處(2022)。資料查詢∣資料庫查詢∣工業產銷存-產品統計。取自https://dmz26.moea.gov.tw/GMWeb/investigate/InvestigateDA.aspx 。
詹尚文(2009)。國內工業廢棄物處理成本效益分析探討-以印刷電路板業含銅污泥為例。國立臺北大學自然資源與環境管理研究所在職專班碩士論文,新北市。 取自https://hdl.handle.net/11296/9gtn63。
蔡宗延(2019)。銅循環於台灣產業鏈之潛力與價值-銅之物質流及成本效益整合性分析。國立成功大學環境工程學系碩士論文,台南市。取自https://hdl.handle.net/11296/8u9h64。
蔡敏行、張祖恩、鄭智和、蔡尚林(2013)。建構國內二次銅資源循環體系之探討。鑛冶: 中國鑛冶工程學會會刊,57(1),22-37。
鄭智和(2004)。剝錫(錫鉛)廢液資源化技術之探討。取自https://riw.tgpf.org.tw/ReadFile/?p=ProductsHistory&n=13%E6%8A%80%E8%A1%93_+%E5%89%9D%E9%8C%AB%EF%BC%88%E9%8C%AB%E9%89%9B%EF%BC%89%E5%BB%A2%E6%B6%B2%E8%B3%87%E6%BA%90%E5%8C%96%E6%8A%80%E8%A1%93%E4%B9%8B%E6%8E%A2%E8%A8%8E.pdf。
MoneyDJ理財網(n.d.)。銅箔基板。取自https://www.moneydj.com/kmdj/wiki/wikiv
iewer.aspx?keyid=ae208f1b-a9ca-4759-bf43-6314bf20c893。