| 研究生: |
鄭維仁 Cheng, Wei-Jen |
|---|---|
| 論文名稱: |
真實行人下肢有限元素模型之設計驗證與碰撞傷害評估 Design, Validation and Impact Injury Assessment of a Pedestrian Lower Limb Finite Element Model |
| 指導教授: |
黃才炯
Hunag, Tsai-Jeon |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 132 |
| 中文關鍵詞: | 行人下肢 、行人傷害 、驗證測試 、生物擬真性 、機車碰撞意外事故 |
| 外文關鍵詞: | Pedestrian lower limb, Pedestrian injury, Certification, Biofidelity, Scooter crash accident |
| 相關次數: | 點閱:89 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣因人口密集且大都集中於都會區,使得高機動性與低成本的速克達機車(Scooter)為主要交通工具之一,也使得機車成為台灣事故比率最高的車種。都會區道路行人密集度高,活動空間常與機車重疊共用,造成機車與行人事故頻繁。而機車與行人意外事故中,最容易對行人下肢造成傷害,其常見的傷害機制為骨折或膝關節軟組織的損傷,因所需復健時間冗長,故不可忽略其嚴重性。
汽車產業對安全碰撞的研究已發展多年,無論是碰撞人偶試驗或是次系統試驗,利用機械裝置來模擬乘客或行人,並重現接近真實人體的碰撞反應。歐洲促進汽車安全委員會(EEVC)所制定的次系統測試方法是用來評估車輛撞擊的運動反應及傷害,其中用來評估人體下肢碰撞反應和傷害的是下肢衝擊器,但下肢衝擊器的規範主要關注在膝蓋傷害,對於最易發生的骨折只能利用加速度做為評估。然而這些機械裝置只代表有近似的人體擬真度,若要了解真實人體的碰撞反應,除了大體試驗與自願者試驗外,只能利用電腦模擬。
本研究使用有限元素法,建立真實人體下肢電腦模型,以了解機車碰撞時其對行人下肢的影響。研究流程可分為三階段。第一階段中,利用Visible Human Project全身電腦斷層掃瞄建立下肢骨頭與肌肉模型,再透過縮放理論得到50%成年男性模型。第二階段則進行模型的驗證,首先對下肢的股骨、脛骨與腓骨進行靜態與動態三點彎曲驗證,再對整體下肢做彎曲與剪切撞擊驗證。第三階段即利用真實人體下肢模型對機車進行碰撞模擬,並評估行人下肢於機車事故中受傷的可能。
Automobile industry on the human body collision injury research has been developed for many years. Therefore, crash dummies in many biological reactions and injury assessments have been similar to real human. EEVC proposed sub-system tests to evaluate responses and injuries of pedestrians in lateral car-pedestrian accidents. However, the EEVC Pedestrian Legform is evaluated with shearing displacement and bending angle at the knee joint as well as acceleration of a proximal part of the leg segment. Therefore, it can be noted that this test procedure primarily focuses on injuries to the knee joint of all injuries to the lower limb.
The purpose in this thesis is to design a human pedestrian lower limb finite element model, which can reproduce anatomical geometry and biomechanical properties of human body. The thesis process can be divided into three stages. First, this thesis constructs lower limb bones and muscle model by computer tomography by Visible Human Project, and using a scaled down technique to obtain the model of 50% adult male. Second, this thesis used finite element analysis software to do the calibration simulations to evaluate the model’s biofidelity with cadaver test such as static and dynamic 3-point bending tests for bones, dynamic bending and shearing test for lower limb. Last, this thesis simulated scooter accident with human pedestrian lower limb model, and evaluate the injuries of pedestrians’ lower limb.
Ackerman, M. J., “The Visible Human Project,” Proceedings of the IEEE, Vol. 86, Issue. 3, pp.504-511, 1998.
Chidester, A. and Isenberg, R., “Final Report-The Pedestrian Crash Data Study,” 17th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Paper No. 248, 2001.
Crandall, J. R., Petit, P., Portier, L., Hall, G. W., Bass, C. R., Klopp, G. S., Hurwitz, S., Pilkey, W. D., Trosseille, X., Tarrière, C., and Lassau, J-P., “Biomechanical Response and Physical Properties of the Leg, Foot, and Ankle,” Society of Automotive Engineers (SAE), Paper No. 962424, 1996.
Crandall, J., Bhalla, K., and Madeley, N., “Designing Road Vehicles for Pedestrian Protection,” British Medical Journal, Vol. 324, pp. 1145-1148, 2002.
Croop, B. and Lobo, H., “Selecting Material Models for the Simulation of Foams in LS-DYNA,” 7th European LS-DYNA Conference, 2009.
EEVC, “EEVC Ad-Hoc Group Report – A Review of Motorcycle Safety,” European Experimental Vehicles Committee, 1994.
EEVC, “EEVC Working Group 10 Report - Proposals for Methods to Evaluate Pedestrian Protection for Passenger Cars,” European Experimental Vehicles Committee, 1994.
EEVC, “EEVC Working Group 12 Report – Report on THOR-Lx Design and Performance,” European Enhanced Vehicle-Safety Committee, 2009.
EEVC, “EEVC Working Group 17 Report - Improve Test Methods to Evaluate Pedestrian Protection Afforded by Passenger Cars,” European Enhanced Vehicle-Safety Committee, 1998.
Fressmann, D., “Vehicle Safety Using the THUMS Human Model,” 11th German LS-DYNA Form 2012, Ulm, Germany, 2012
Funk, J. R., Srinivasan, S. C. M., Crandall, J. R., Khaewpong N., Eppinger, R. H., Jaffredo, A. S., Potier, P., and Petit, P. Y., “The Effect of Axial Preload and Dorsiflexion on the Tolerance of the Ankle/Subtalar Joint to Dynamic Inversion and Eversion,” Stapp Car Crash Journal, Vol. 46, 2002.
Gennarelli, T. and Wodzin, E., “AIS 2005: A Contemporary Injury Scale,” International Journal of the Care of the Injured (Injury), Vol. 37, pp. 1083-1091, 2006.
Hanna, R., and Austin, R., “Lower-Extremity Injuries in Motorcycle Crashes” Mathematical Analysis Division, National Center for Statistic and Analysis, National Highway Traffic Safety Administration (NHTSA), 2008.
Irwin, A. and Mertz, H. J., “Biomechanical Basis for the CRABI and Hybrid III Child Dummies,” Proc. 41th Stapp Car Crash Conf., SAE, Paper No. 973317, SAE, 1997.
Kajzer, J., “Impact Biomechanics of Knee Injuries,” Doctoral Thesis, Department of Injury Prevention, Chalmers University of Technology, Göteborg, Sweden, 1991.
Kajzer, J., Cavallero, C., Bonnoit, J., Morjane, A., and Ghanouchi, S., “Response of the Knee Joint in Lateral Impact-Effect of Bending Loads,” 1993 International IRCOBI Conference on the Biomechanics of Impact, pp. 105-116, 1993.
Kajzer, J., Schroeder, G., Ishikawa, H., and Matsui, Y., “Shearing and Bending Effects at the Knee Joint at High Speed Lateral Loading,” 41th Stapp Car Crash Conference, Paper No. 973326, 1997.
Kalliske, I. and Friesen, F., “Improvements to Pedestrian Pretection as Exemplified on a Standard-Sized Car,” 17th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Paper No. 283, 2001.
Konosu, A., “Information on the Flexible Pedestrian Legform Impactor GT ALPHA,” Flex-PLI Technical Evaluation Group Technical Report, Paper No. TEG-022, 2006.
Kress, T. A., Porta, D. J., Snider, J. N., Fuller, P. M., Psihogios, J. P., Heck, W. L., Frick, S. J., Wasserman, J. F., “Fracture Patterns of Human Cadaver Long Bones,” Proceedings of the International Research Council on the Biomechanics of Injury Conference, Vol. 23, International Research Council on Biomechanics of Injury, 1995.
Krone, R. and Schuster, P., “An Investigation on the Importance of Material Anisotropy in Finite-Element Modeling of the Human Femur,” SAE Technical Paper, Paper No. 2006-01-0064, 2006.
Kuppa, S., Wang, J., Haffner, M., and Eppinger, R., “Lower Extremity Injuries and Associated Injury Criteria,” 17th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Paper No. 457, 2001.
Livermore Software Technology Corporation (LSTC), “LS-DYNA Keyword User’s Manual Volume I,” 2013.
Livermore Software Technology Corporation (LSTC), “LS-DYNA Keyword User’s Manual Volume II Material Models,” 2013.
Mallory, A. and Stammen, J., “Lower Extremity Pedestrian Injury in the U.S.: A Summary of PCDS Data,” NHTSA Vehicle Research and Test Center, 2006.
Mallory, A. and Stammen, J., “Performance of Vehicle Bumper Systems with the EEVC/TRL Pedestrian Lower Legform,” 21th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Paper No. 318, 2009.
Manoli, A. 2nd., Prasad, P., and Levine, R. S., “Foot and Ankle Severity Scale (FASS),” Foot & Ankle International, 1997.
Marieb, Elaine Nicpon, and Jon Mallatt. “Human Anatomy,” Cummings Publishing Company, 2002.
Matsui, Y., “Biofidelity of TRL Legform Impactor and Injury Tolerance of the Human Leg in Lateral Impact,” Society of Automotive Engineers, Paper No. 2001-22-0023, 2001.
Matsui, Y., Takagi, S., Tanaka, Y., Hosokawa, N., Itoh, F., Nakasato, H., Watanabe, N., and Yonezawa, N., “Characteristics of the TRL Pedestrian Legform and the Flexible Pedestrian Legform Impactors in Car-Front Impact Tests,” 21th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Paper No. 206, 2009.
Matsui, Y., Ishikawa, H., Sasaki, A., Kajzer, J., and Schroeder, G., “Impact Response and Biofidelity of Pedestrian Legform Impactors,” 1999 International IRCOBI Conference on the Biomechanics of Impact, pp. 343-354, 1999.
McConville, J. T., Clauser, C. E., Churchill, T. D., Cuzzi, J., & Kaleps, I., “Anthropometric Relationships of Body and Body Segment Moments of Inertia,” Air Force Aerospace Medical Research Laboratory, Wright-Patterson AFB, Ohio., Technical Report AFAMRL-TR-80-119, 1980.
Medri, M., Zhou, Q., DiMasi, F., and Bandak, F., “Head-Neck Finite Element Model of the Crash Test Dummy THOR,” International Journal of Crashworthiness, Vol. 9, Paper No. 2, pp. 175-186, 2004.
Mertz, H. J., “Accidental Injury: Biomechanics and Prevention,” edited by A. M. Nahum and J. W. Melvin, Springer-Verlag, New York, 1993.
Mertz, H. J., Irwin, A. L., Melvin, J. W., Stalnaker, R. C., and Beebe, M. S.,“Size, Weight and Biomechanical Impact Response Requirements for Adult Size Small Female and Large Male Dummies,” SAE, Paper No. 890756, SAE, 1989.
Mertz, H. J., Jarrett, K., Moss, S., Salloum, M. and Zhao, Y., “The Hybrid III 10-Year-Old Dummy,” Stapp Car Crash Journal, Vol. 45, Paper No. 2001-22-0014, SAE, 2001.
Miyazaki, H., Kitagawa, Y., Yasuki, T., Kuwahara, M., and Matsuoka, M., “Development of Flexible Pedestrian Legform Impactor FE Model and Comparative Study with Leg Behavior of Human FE Model THUMS,” 21th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Paper No. 112, 2009.
Mizuno, Y. and Ishikawa, H., “Summary of IHRA Pedestrian Safety WG Activities – Proposed Test Method to Evaluate Pedestrian Protection Aforded by Passenger Cars,” 18th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Paper No. 280, 2003.
M ller, M., Allg wer, M., Schneider, R., and Willenegger, H., “Manual of Internal Fixation– Techniques Recommended by the AO-ASIF Group,” Springer-Verlag, 1991.
Morgan, R., Marcus, J., and Eppinger, R., “Correlation of Side Impact Dummy/Cadaver Tests,” 25th Stapp Car Crash Conference, Paper No. 811008, 1981.
Nyquist, G. W., “Injury Tolerance Characteristics of the Adult Human Lower Extremities Under Static and Dynamic Loading,” Society of Automotive Engineers (SAE), Paper No. 861925, 1986.
Otte, D. and Pohlemann, T., “Analysis and Load Assessment of Secondary Impact to Adult Pedestrians After Car Collisions on Road,” 17th International Conference on the Enhanced Safety of Vehicles (ESV), 2001.
Otte, D., Willeke, H., Chinn, B., Doyle, D., and Shuller, E., “Impact Mechanisms of Helmet Protected Heads in Motorcycle Accidents-Accidental Study of COST 327,” 1998 International Motorcycle Conference, 1998.
Parenteau, C., Viano, D., Petit, P., “Biomechanical Properties of Human Cadaveric Ankle-Subtalar Joints in Quasi-static Loading,” Jornal of Biomechanical Engineering, Vol. 120, pp. 105-111, 1998.
Park, J. J., Haddadin, S., Song, J. B., & Albu-Schaffer, A., “Designing Optimally Safe Robot Surface Properties for Minimizing the Stress Characteristics of Human-robot Collisions,” 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 5413-5420, 2011.
Philippens, M., Cappon, H., Ratingen, M., and Wismans, J., “Comparison of the Rear Impact Biofidelity of BioRID II and RID2,” 46th Stapp Car Crash Conference, Paper No. 2002-22-0023, 2002.
Portier, L., Petit, P., Domont, A., Trosseille, X., Le Coz, J. Y., Tarrière, C., & Lassau, J. P., “Dynamic Biomechanical Dorsiflexion Responses and Tolerances of the Ankle Joint Complex,” SAE Technical Paper, Paper No. 973330, 1997
Robbins, D. H., “Anthropometric Specifications for Mid Sized Male Dummy, volume 2,” UMTRI, Report No. UMTRI-83-53-2, 1983.
Schneider, L., Robbins, D., Pflug, M., and Snyder, R., “Development of Anthropometrically Based Design Specifications for an Advanced Adult Anthropomorphic Dummy Family, Volume 1. Final report,” UMTRI, Report No. UMTRI-83-53-1, 1983.
Schuster, Peter J., and Clifford C. Chou., “Development and Validation of a Pedestrian Lower Limb Non-Linear 3-D Finite Element Model,” SAE Technical Paper, No. 2000-01-SC21, 2000.
Simms, C. K., “Developments in Pedestrian Crash Safety: A Triumph of Design in Bioengineering,” Perspectives on Design and Bioengineering: Essays in Honour of C.G. Lyons, pp. 39-55, 2008.
Sporner, A., Langwieder, K., and Polauke, J., “Risk of Leg Injuries to Motorcyclists, Present Situation and Countermeasures,” 12th International Technical Conference on the Enhanced Safety of Vehicles (ESV) Conference, Goteborg, Sweden, 1989.
Takahashi, Yukou, et al., “Development and Validation of the Finite Element Model for the Human Lower Limb of Pedestrians,” SAE Technical Paper, Paper No. 2000-01-SC22, 2000.
Tiemann, N., Branz, W., and Schramm, D., “Predictive Pedestrian Protection– Sensor Requirements and Risk Assessment,” 21th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Paper No. 226, 2009.
Trent, P. S., Walker, P. S., & Wolf, B., “Ligament Length Patterns, Strength, and Rotational Axes of the Knee Joint,” Clinical Orthopaedics and Related Research, Vol. 117, pp. 263-270, 1976.
Yamada H., “Strength of Biological Materials,” The Williams & Wilkins Company, 1970.
Yang, J., “Review of Injury Biomechanics in Car-Pedestrian Collisions,” Crash Safety Division, Machine and Vehicle Systems, Chalmers University of Technology, 2002.
內政部統計處(2014),內政統計年報,內政部,台北,台灣。
內政部警政署統計室(2009),96年道路交通事故分析,內政部,台北,台灣。
交通部公路總局(2014),機動車輛登記數,交通部,台北,台灣。
交通部統計處(2014),中華民國交通統計月報,交通部,台北,台灣。
吳淑華(2008),騎過半世紀:機車特展,國立科學工藝博物館,台灣。
俞泰華(2012),行人與機車騎士下肢碰撞模擬及傷害評估,國立成功大學機械工程學系學位論文。
陳金山與徐淑媛編譯(2008),Netter’s人體解剖學圖譜,合計圖書出版社,台北,台灣。
衛生福利部(2014),101年國人主要死因統計結果,衛生福利部,台北,台灣。
鄭麗菁、鐘敦輝、陳建行與賴昆城編譯(2008),Gray’s醫用解剖學,合計圖書出版社,台北,台灣。