簡易檢索 / 詳目顯示

研究生: 黃政方
Huang, Cheng-Fang
論文名稱: 某類混沌系統之準滑動模式強健控制器設計
Robust Quasi-Sliding Mode Control Design for a Class of Chaotic Systems
指導教授: 廖德祿
Liao, Teh-Lu
學位類別: 博士
Doctor
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 73
中文關鍵詞: 抖動現象保密通訊準滑動模式控制強健控制非匹配擾動
外文關鍵詞: Chattering phenomenon, Secure communication, Quasi-sliding mode control, Robust control, Unmatched uncertainties
相關次數: 點閱:107下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們利用準滑動模式控制(QSMC)及李亞普夫穩定性理論,針對傳統的滑動模式控制系統中所存在的抖動現象進行研究。首先,我們透過連續控制的概念提出一個可變結構控制(VSC)法則,處理一個改良式蔡氏系統的同步問題。並且,將此同步系統應用於保密通訊系統,以確保被嵌入在發送端的訊息,可以成功的在接收端被解回。除此之外,為應用於高效能的通訊系統,我們利用隨機數位序列產生器(RDS)所產生的同步加密金鑰,提出了一種新的數位保密通訊系統。第二,我們提出一個新的準滑動模式控制概念,針對具有線性plus-cubic阻尼混沌的對稱性陀螺儀系統進行研究。透過準滑動模式控制應用,可以消除以往滑動模式控制所產生的抖動現象。即使在非線性輸入下,被控制的陀螺儀系統可以追蹤至任意狀態,並使得追蹤誤差可以被驅使至可預測之零附近。第三,我們提出準滑動模式控制概念,針對永磁式同步馬達系統(PMSM)之強健控制進行研究,在系統分别受到匹配擾動與不匹配擾動並具非線性輸入的影響下,系統狀態可以被穏定或是驅動到可預測之零的附近。除此之外,這種方法只使用單一控制器來達成混沌控制,因此可以降低實現上的成本和複雜性。

    In this dissertation, problems of chattering phenomenon in conventional sliding mode control systems are investigated using the Quasi-sliding mode control (QSMC) and Lyapunov stability theory. First, we propose variable structure control (VSC) laws to cope with the synchronization problem of modified Chua’s systems via concept of continuous control. Then, we apply VSC to secure communication system to ensure that the message signal embedded in the transmitter can be recovered in the receiver. In addition, we propose a new digital secure communication system based on synchronized encryption keys generated for high performance communication by random digital sequences (RDS) generators. Secondly, a new concept of QSMC is introduced for the tracking control of chaotic symmetric gyros with linear-plus-cubic damping. In contrast to previous works on sliding mode control, based on the proposed QSMC, the chattering phenomenon can be eliminated. Furthermore, the controlled gyro system can track desired trajectories and tracking errors can be driven into a predictable neighborhood of zero, even when the input nonlinearity is present. Thirdly, the concept of QSMC is introduced for the robust control of a permanent magnet synchronous motor (PMSM) system subjected to matched uncertainties, and even with unmatched uncertainties and input nonlinearity. As expected, the system state can be stabilized and driven into a predictable neighborhood of zero. Also, this approach only uses a single controller to achieve chaos control, which reduces the cost and complexity of implementation.

    中文摘要 I Abstract II Acknowledgments III Contents IV List of Figures VI Nomenclature IX Chapter 1 Introduction 1 1.1 Motivation 3 1.2 Brief Sketch of the Contents 5 Chapter 2 Synchronization Control of Master-Slave Chaotic Systems 8 2.1 Synchronization Control of Chua’s System via Continuous Adaptive VSC Controller 9 2.1.1 System Description and Problem Formulation 9 2.1.2 Switching Surface and Adaptive Continuous VSC Design 11 2.1.3 Numerical Simulation 15 2.2 Synchronization of Chaotic System via Output Feedback Controller 20 2.2.1 Design of Synchronization Controllers and RDS Generators 20 2.2.2 Sprott Circuits of Digital Secure Communication Systems 22 2.2.3 Simulation Results 23 Chapter 3 Quasi-Sliding Mode Control of Chaotic Symmetric Gyros with Linear-Plus-Cubic Damping and Input Nonlinearity 30 3.1 System Description and Problem Formulation 30 3.2 Quasi-Sliding Manifold and Controller Design 32 3.3 Numerical Simulations 36 Chapter 4 Design of Quasi-Sliding Mode Control of Permanent Magnet Synchronous Motor 42 4.1 Quasi-Sliding Mode of PMSM System with Matched Uncertainty 43 4.1.1 System Description and Problem Formulation 43 4.1.2 Definition of Quasi-Sliding Manifold and Switching Surface Design 45 4.1.3 QSMC Design of Quasi-Sliding Manifold 47 4.1.4 Numerical Example 49 4.2 Quasi-Sliding Mode of PMSM System with Unmatched Uncertainties 53 4.2.1 System Description and Problem Formulation 53 4.2.2 Quasi-Sliding Manifold and Controller Design 55 4.2.3 Numerical Simulations 58 Chapter 5 Conclusions and Future Works 64 5.1 Conclusion 64 5.2 Future Works 65 References 66

    [1] H. Zhang, D. Liu, Z. Wang (2009), Controlling Chaos: Suppression, Synchronization and Chaotification, Communications and Control Engineering, Springer.
    [2] R.C. Robinson (2004), An Introduction to Dynamical Systems: Continuous and Discrete. Prentice Hall, New York
    [3] E.N. Lorenz (1963), “Deterministic nonperiodic flow,” Journal of the Atmospheric Sciences, 20 (2) pp.130~141.
    [4] F. Diacu, P. Holmes (1996), Celestial Encounters: The Origins of Chaos and Stability, Princeton University Press, Princeton, NJ.
    [5] M. Sun, Q. Jia, L. Tian (2007), “A new four-dimensional energy resources system and its linear feedback control,” Chaos Solitons & Fractals, 39 (1) pp.101~108.
    [6] H.K. Chen, T.N. Lin, J.H Chen (2005), “Dynamic analysis, controlling chaos and chaotification of a SMIB power system,” Chaos Solitons & Fractals, 24 (5) pp.1307~1315.
    [7] D.L. Cheng, C.F. Huang, S.Y. Cheng, J.J. Yan (2009), “Synchronization of optical chaos in vertical-cavity surface emitting lasers via optimal PI controller,” Expert Systems with Applications, 36 (3) pp. 6854~6858.
    [8] S.K. Dana, D.C. Sengupta, K.D. Edoh (2001), “Chaotic dynamics in Josephson junction,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 48 (8) pp. 990~996.
    [9] C.W. Lai, C.K. Chen, T.L. Liao, J.J. Yan (2008), “Adaptive synchronization for nonlinear FitzHugh–Nagumo neurons in external electrical stimulation,” International Journal of Adaptive Control and Signal Processing, 22 ( 9) pp.833~844.
    [10] C.J. Thompson, D.C. Bardos, Y.S, Yang, K.H. Joyner (1999), “Nonlinear cable models for cells exposed to electric fields. I. General theory and space-clamped solutions,” Chaos Solitons & Fractals, 10 (11) pp.1825~1842.
    [11] L.M. Pecora, T.L. Carroll (1990), “Synchronization in chaotic systems,” Phys. Rev. Lett., 64 pp.821~824.
    [12] K.M. Cuomo, A.V. Oppenheim, S.H. Strogatz (1993), “Synchronization of Lorenz-based chaotic circuits with applications to communications,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 40 (10) pp.626~633.
    [13] A. Hübler (1989), “Adaptive control of chaotic systems,” Helv. Phys. Acta., 62 pp.343~347.
    [14] E. Ott, C. Grebogi, J.A. Yorke (1990), “Controlling chaos,” Phys. Rev. Lett., 64 pp.1196~1199.
    [15] D. Auerbach, C. Grebogi, E. Ott, J.A. Yorke (1992), “Controlling chaos in high dimensional systems,” Phys. Rev. Lett., 69 pp.3479~3482.
    [16] M. Ding, W. Yang, V. In, W.L. Ditto, M.L. Spano, B. Gluckman (1996), “Controlling chaos in high dimensions: Theory and experiment,” Physical Review E, 53 pp.4334~4344.
    [17] K. Pyragas (1992), “Continuous control of chaos by self-controlling feedback,” Physics Letters A, 170 (6) pp. 421~428.
    [18] Y. Zeng, S.N. Singh (1997), “Adaptive Control of Chaos in Lorenz System,” Dynamics and Control April, 7 (2) pp. 143~154.
    [19] Z. Li, G. Chen (2010), Integration of Fuzzy Logic and Chaos Theory 1st, Springer Publishing Company, Incorporated.
    [20] J. Zheng (2011), “A simple universal adaptive feedback controller for chaos and hyperchaos control,” Computers and Mathematics with Applications, 61 (8) pp. 2000~2004.
    [21] X.F. Wang, G. Chen (2002), “Pinning control of scale-free dynamical networks,” Physica A: Statistical Mechanics and its Applications, 310 (3-4) 15 pp. 521~531.
    [22] W.D. Chang, J.J. Yan (2005), “Adaptive robust PID controller design based on a sliding mode for uncertain chaotic systems,” Chaos Solitons & Fractals, 26 (1) pp.167~175.
    [23] A. Uçar (2007), “Model reference control of chaotic systems,” Chaos Solitons & Fractals, 31 (3) pp.712~717.
    [24] K.M. Cuomo, A.V. Oppenheim, S.H. Strogatz (1993), “Synchronization of Lorenz-based chaotic circuits with applications to communications,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 40 (10) pp.626~633.
    [25] Ö. Morgül, M. Feki (1999), “A chaotic masking scheme by using synchronized chaotic systems,” Physics Letters A, 251 (3) pp.169~ I76.
    [26] K.Y. Lian, C.S. Chiu, T.S. Chiang, P. Liu (2001), “Secure communications of chaotic systems with robust performance via fuzzy observer based design,” IEEE Transactions on Fuzzy Systems, 9 (l) pp. 212~220.
    [27] J.F. Chang, T.L. Liao, J.J. Yan, H.C. Chen (2010), “Implementation of synchronized chaotic Lu systems and its application in secure communication using PSO-based PI controller,” Circuits, Systems and Signal Processing, 29 (3) pp.527~538.
    [28] X.Y. Wang, Y.F. Gao (2010), “A switch-modulated method for chaos digital secure communication based on user-defined protocol,” Communications in Nonlinear Science and Numerical Simulation, 15 pp.99~104.
    [29] N. Reddell, E. Bollt, T. Welch (2005), “A dual-synchrony chaotic communication scheme,” Circuits, Systems and Signal Processing, 24 (5) pp.557~570.
    [30] S. Wang, J. Feng, S. Xie (2007), “A multiuser chaotic communication scheme by parameter division multiple access,” Circuits, Systems and Signal Processing, 26 (6) pp.839~852.
    [31] E.W. Bai, K.E. Lonngren (2000), “Sequential synchronization of two Lorenz systems using active control,” Chaos, Solitons & Fractals, 11 (7) pp.1041~1044.
    [32] X.S. Yang, G. Chen (2002), “Some observer-based criteria for discrete-time generalized chaos synchronization,” Chaos, Solitons & Fractals, 13 (60) pp.1303~1308.
    [33] J. Sun, Y. Zhang, Q. Wu (2002), “Impulsive control for the stabilization and synchronization of Lorenz systems,” Physics Letters A, 298 (2-3) pp.153–60.
    [34] S Chen, Q Yang, C Wang (2004), “Impulsive control and synchronization of unified chaotic system,” Chaos, Solitons & Fractals, 20 (4) pp.751~758.
    [35] Y.P. Tian, X. Yu (2000), “Stabilizing unstable periodic orbits of chaotic systems via an optimal principle,” Journal of the Franklin Institute, 337 (6) pp.771–779.
    [36] S.M. Guo, L.S. Shieh, G. Chen, C.F. Lin (2000), “Effective chaotic orbit tracker: a prediction-based digital redesign approach,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 47 (11) pp.1557~1560.
    [37] T. Wu, M.S. Chen (2000), “Chaos control of the modified Chua’s circuit system,” Physica D, 164 pp.53~58.
    [38] J. Zhang, C. Li, H. Zhang, J. Yu (2004), “Chaos synchronization using single variable feedback based on backstepping method,” Chaos Solitons & Fractals, 21 (5) pp.1183~1193.
    [39] M. Roopaei, B.R. Sahraei, T.C. Lin (2010), “Adaptive sliding mode control in a novel class of chaotic systems,” Communications in Nonlinear Science and Numerical Simulation, 15 (12) pp.4158~4170.
    [40] L. Boutat-Baddas, J.P. Barbot, D. Boutat, R. Tauleigne (2004), “Sliding mode observers and observability singularity in chaotic synchronization,” Mathematical Problems in Engineering, 2004 (1) pp.11~31.
    [41] S.H. Hosseinnia, R. Ghaderi, A. Ranjbar, N.M. Mahmoudian, S. Momani (2010), “Sliding mode synchronization of an uncertain fractional order chaotic system,” Computers and Mathematics with Applications, 59 (6) pp.1637~1643.
    [42] M. Roopaei, B.R. Sahraei, T.C. Lin (2010), “Adaptive sliding mode control in a novel class of chaotic systems,” Communications in Nonlinear Science and Numerical Simulation, 15 (12) pp.4158~4170.
    [43] C. Edwards, S.K. Spurgeon, R.J. Patton (2000), “Sliding mode observers for fault detection and isolation,” Automatica, 36 (4) pp.541~548.
    [44] C.P. Tan, C. Edwards (2002), “Sliding mode observers for detection and reconstruction of sensor faults,” Automatica, 38 (10) pp.1815~1821.
    [45] H.T. Yau (2008), “Synchronization and anti-synchronization coexist in two-degree-of- freedom dissipative gyroscope with nonlinear inputs,” Nonlinear Analysis: Real World Applications, 9 (5) pp.2253~2261.
    [46] H.T. Yau, C.K. Chen, C. L. Chen (2000), “Sliding mode control of chaotic systems with uncertainties,” International Journal of Bifurcation and Chaos, 10 (5) pp.1139~1147.
    [47] T. Sang, R.L. Wang, Y.X. Yan (1998), “Perturbance-based algorithm to expand cycle length of chaotic key stream,” Electronics Letters, 34 (9) pp. 873~874.
    [48] H. Zhou (1997), “Realizing finite precision chaotic system via perturbation of m-sequences,” Acta. Electronica Sinica, 25 (7) pp.95~97.
    [49] H.K. Chen (2002), “Chaos and chaos synchronization of a symmetric gyro with linear-plus-cubic damping,” Journal of Sound and Vibration, 255 (4) pp.719~740.
    [50] R.V. Dooren (2003), “Comments on “chaos and chaos synchronization of a symmetric gyro with linear-plus-cubic damping,” Journal of Sound and Vibration, 268 (3) pp.632~634.
    [51] M.P. Polo, P. Albertos, J.Á.B. Galianoa (2008), “Tuning of a PID controlled gyro by using the bifurcation theory,” Systems & Control Letters, 57 (1) pp.10~17.
    [52] H. Salarieh, A. Alasty (2008), “Chaos synchronization of nonlinear gyros in presence of stochastic excitation via sliding mode control,” Journal of Sound and Vibration, 313 (3-5) pp.760~771.
    [53] J.J. Yan , M.L. Hung, T.L. Liao (2006), “Adaptive sliding mode control for synchronization of chaotic gyros with fully unknown parameters,” Journal of Sound and Vibration, 298 (1-2) pp.298~306.
    [54] Y. Kuroe, S. Hayashi (1989), “Analysis of bifurcation in power electronic induction motor drive systems,” 20th Annual IEEE Power Electronics Specialists Conference (PESC ’89), 2 pp. 923~930, Milwaukee, Wisconsin, USA.
    [55] Z. Sütő, I. Nagy, E. Masada (1998), “Avoiding chaotic processes in current control of AC drive,” 29th Annual IEEE Power Electronics Specialists Conference (PESC ’98), 1 pp. 255~261, Fukuoka , Japan.
    [56] J.H. Chen, K.T. Chau, C.C. Chan (2000), “Analysis of chaos in current-mode-controlled dc drive systems,” IEEE Transactions on Industrial Electronics, 47 (1), pp. 67~76.
    [57] Z. Li, J.B. Park, Y.H. Joo, B. Zhang, G. Chen (2002), “Bifurcations and chaos in a permanent-magnet synchronous motor,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 49 (3) pp. 383~387.
    [58] A.M. Harb (2004), “Nonlinear chaos control in a permanent magnet reluctance machine,” Chaos, Solitons & Fractals, 19 (5) pp.1217~1224.
    [59] H. Ren, D. Liu (2006), “Nonlinear feedback control of chaos in permanent magnet synchronous motor,” IEEE Transactions on Circuits and Systems II, 53 (1) pp. 45~50.
    [60] D.Q. Wei, X.S. Luo, B.H. Wang, J.Q. Fang (2007), “Robust adaptive dynamic surface control of chaos in permanent magnet synchronous motor,” Physics Letters A, 363 (1-2) pp.71~77.
    [61] M.T. Yassen (2003), “Adaptive control and synchronization of a modified Chua’s circuit system,” Applied Mathematics and Computation, 135 (1) pp.113~128.
    [62] V.I. Utkin (1978), Sliding Mode and Their Applications in Variable Structure Systems, Moscow: MIR Publishers.
    [63] V.M. Popov (1973), Hyperstability of Control System, Berlin: Springer.
    [64] D.I.R. Almeida, J. Alvarez, J.G. Barajas (2006), “Robust synchronization of Sprott circuits using sliding mode control,” Chaos, Solitons & Fractals, 30 (1) pp.11~18.
    [65] Orcad / PSpice 9.0 User Guide, Product Version 10.2, Cadence Design Systems, Inc. (2004).
    [66] M.C. Pai (2010), “Sliding mode control of vibration in uncertain time-delay systems,” Journal of Vibration and Control, 16 (14) pp.2131~2145.
    [67] M. Roopaei and M.Z. Jahromi (2009), “Chattering-free fuzzy sliding mode control in MIMO uncertain systems,” Nonlinear Analysis. Theory, Methods & Applications, vol. 71 (10) pp.4430~4437.
    [68] H. Lee, V.I. Utkin (2007), “Chattering suppression methods in sliding mode control systems,” Annual Reviews in Control, 31 (2) pp.179~188.
    [69] J. Šimánek, J. Novák, R. Doleček, O. Černý (2007), “Control algorithms for permanent magnet synchronous traction motor,” EUROCON, 2007. The International Conference on "Computer as a Tool", pp. 1839~1844, Warsaw.
    [70] H.J. Márquez (2003), Nonlinear Control Systems: Analysis and Design, New York : JohnWiley & Sons.

    下載圖示 校內:2018-08-02公開
    校外:2018-08-02公開
    QR CODE