| 研究生: |
卓勝雄 Zhuo, Sheng-Xiong |
|---|---|
| 論文名稱: |
對於週期性拓樸光子晶體之幾何相位性質研究 Geometric Phase Properties of 1D Periodic Topological Photonic Crystals studied by Finite-Difference Time-Domain Method |
| 指導教授: |
張世慧
Chang, Shih-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 光子晶體 、拓樸相位 、札克相位 、法不立-佩羅共振 、有限差分時域法 |
| 外文關鍵詞: | photonic crystal, topological phase, Zak phase, Fabry-Perot resonant, FDTD |
| 相關次數: | 點閱:72 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自從1980年被Klitzing發現凝聚態物理中之整數量子霍爾效應(integer quantum Hall effect)以及Haldane在1988年提出量子異常霍爾效應(quantum anomalous Hall effect)並將相關研究延伸至光學系統後,拓樸絕緣體(topological insulator)之概念引起了科學界的廣泛注目。拓樸絕緣體有一特性,當具有不同拓撲數之能帶的材料相互接觸時會產生一邊緣態,並且其邊緣態可以起到拓撲保護(topological protected)作用,產生背散射抑制(back scattering)和免疫缺陷(defect)的單向傳播(unidirectional propagating)行為,對於傳播效率提升具有相當大的助益。另一方面M‧V‧Berry在1984年對於週期性固體在電子動力學領域所展現之相位性質率先定義出拓樸相位,並由J‧Zak於1989年提出了一維Berry phase在固態物理中能帶之相關拓樸特性,並在2019年Hai-Xiao Wang等人提出了Wilson loop以便在光學模擬空間中求得拓樸相位之數值解,對於光子晶體所展現之能帶結構中的拓樸性質有了明確的描述及量化,為拓樸晶體之設計及特性有更明確的認知,激發了更多後續的理論及實驗研究。
本論文首先於FDTD模擬空間中建立了Wilson loop拓樸相位數值計算法,求得所建構之光子晶體在色散頻譜中所展現的拓樸相位性質,並且將其結果與能帶結構倒空間之第一布里淵區高對稱點之電磁場模態強度分布圖相結合,雙重驗證拓樸相位之準確性質,並且由於光子晶體可類比為無限多層法布立-佩羅共振腔系統(Fabry-Perot resonance cavity system),本論文也採用了有限多層週期性法布立-佩羅共振腔系統及單層法布立-佩羅共振腔系統之穿透頻譜,觀察在不同空氣佔比下,能帶結構與穿透頻譜的關聯性,並且在研究成果中成功預測了能帶間拓樸相位性質,從而建立一套準則,並且將以上結果擴展至二維單向週期性光子晶體結構之介面模態進行討論。最後則是重現了相關領域論文之研究結果,以期對拓樸光學模擬的研究開拓道路。
Since Klitzing discovered the quantum Hall effect in 2D electron gas system in 1980, Haldane proposed the quantum anomalous Hall effect with no magnetic fields in 1988 and then proposed the concept to optical systems. Among these, the core concept of “topological insulators" has attracted widespread attention in recent decays. In the optical system, Wu proposed quantum spin Hall effect in 2015 and stimulated subsequent theoretical and experimental studies in photonic topological insulators.
From the other perspective, in 1984 M. V. Berry proposed the concept of geometrical phase, which is called the "Berry phase", exhibited in the periodic solid state physics using Quantum Electrodynamics. In 1989, J. Zak proposed the 1D Berry phase in 1D solid-state system and related it to the topological properties of the energy band structure and clearly quantified it. In 2019, Wang et al. proposed the "Wilson loop" to obtain the topological phase in optical lattices.
This work first established the Wilson loop topological phase calculation by FDTD simulation and obtain the topological phase properties exhibited in 1D photonic crystal band. We also correlated the nontrivial topological phase with symmetry inversion of mode pattern at and X point. We also adopt the single-layer F-P resonator and multilayer Fabry-Perot resonance cavity systems to observe the correlation between the energy band structure and the transmission spectrum at different dielectric/air ratio, and successfully predicts the topological phase transition crossing energy bands. Finally, we calculate the topological properties in 2D photonic structure, in order to extend the Wilson loop FDTD approach for the photonic/plasmonic topological insulators.
[1] Ling Lu*, John D. Joannopoulos and Marin Soljačić, “Topological photonics”, Nature Photonics volume 8, pages821–829 (2014)
[2] Pickover, Clifford A., “The Möbius Strip: Dr. August Möbius's Marvelous Band in Mathematics, Games, Literature, Art, Technology, and Cosmology,” Thunder's Mouth Press (2006)
[3] L. S. Pontryagin, Arlen Brown, P. S. V. Naidu, “Topological Groups,” Routledge, 3rd Edition, 14 December (2018)
[4] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, “Quantized Hall Conductance in a Two-Dimensional Periodic Potential”,Phys. Rev. Lett., 1982, 49:405
[5] Klitzing K. V., Dorda, G. & Pepper, M. Phys. Rev. Lett., 1980, 45: 494
[6] Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljačić., M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).
[7] Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).
[8] Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Robust optical delay lines with topological protection. Nature Phys. 7, 907–912 (2011).
[9] Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological edge states in silicon photonics. Nature Photon. 7, 1001–1005 (2013).
[10] Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010)
[11] Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011)
[12] Kane C L, Mele E J. Quantum spin Hall effect in graphene.Physical Review Letters, 2005, 95(22): 226801
[13] Bernevig B A, Zhang S C. Quantum spin Hall effect. Physical Review Letters, 2006, 96(10): 106802
[14] Mei et al, “Pseudo-Time-Reversal Symmetry and Topological Edge States in Two-Dimensional Acoustic Crystals,” Scientific Reports volume 6, Article number: 32752 (2016)
[15] Long-Hua Wu, Xiao Hu, “Scheme for Achieving a Topological Photonic Crystal by Using Dielectric Material,” Phys. Rev. Lett. 114, 223901 (2015)
[16] Qiu et al, “Pseudospin Dependent One-Way Transmission in Graphene-Based Topological Plasmonic Crystals,” Nanoscale Research Letters 13:113 (2018)
[17] Barik et al, “Two-Dimensionally Confined Topological Edge States in Photonic Crystals,” New Journal of Physics 18, 113013 (2016)
[18] Chen et al, “Self-Ordering Induces Multiple Topological Transitions for In-Plane Bulk Waves in Solid Phononic Crystals,” Physical review B 98, 014302 (2018)
[19] Ming-Che Chang and Qian Niu, “Berry curvature, orbital moment, and effective quantum theory of electrons in electromagnetic fields”, J. Phys.: Condens. Matter 20 (2008) 193202 (17pp)
[20] Di Xiao, Ming-Che Chang, Qian Niu, “Berry phase effects on electronic properties”
[21] Haldane, F. D. M. Model for a quantum Hall effect without landau levels: Condensed-matter realization of the ‘parity anomaly’. Phys. Rev. Lett. 61, 2015–2018 (1988).
[22] Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).
[23] Raghu, S. & Haldane, F. D. M. Analogs of quantum Hall effect edge states in photonic crystals. Phys. Rev. A 78, 033834 (2008).
[24] Wang, Z., Chong, Y. D., Joannopoulos, J. D. & Marin Soljačić. Reflection-free one-way edge modes in a gyromagnetic photonic crystal. Phys. Rev. Lett. 100, 013905 (2008).
[25] M. V. Berry, Quantal Phase Factors Accompanying Adiabatic Changes, Proc. Roy. Soc. London A 392, 451 (1984)
[26] J. Zak, Berry's Phase for Energy Bands in Solids, Phys. Rev. Lett. 62, 2747 (1989).
[27] Hai-Xiao Wang, Guang-Yu Guo and Jian-Hua Jiang, Band topology in classical waves: Wilson-loop approach to topological numbers and fragile topology, 2019 New J. Phys. 21 093029
[28] Aoqian Shi, Bei Yan, Rui Ge, Jianlan Xie, Yuchen Peng, Hang Li, Wei E. I. Sha,
AND Jian jun Liu, Coupled cavity-waveguide based on topological corner state and edge state, Optics Letters, 46(5): 1089-1092 (2021)
[29] F. Liu and K. Wakabayashi, Novel Topological Phase with a Zero Berry Curvature,
Phys. Rev. Lett. 118, 076803 (2017).
[30] Y. Zeng, U. Chattopadhyay, B. Zhu, B. Qiang, J. Li, Y. Jin, L. Li, A. G. Davies, E. H. Linfield, B. Zhang, Y. Chong, and Q. J. Wang, Electrically pumped topological laser with valley edge modes, Nature 578, 246 (2020).
[31] Xiao-Dong Chen, Wei-Min Deng, Fu-Long Shi, Fu-Li Zhao, Min Chen, and Jian-Wen Dong, Direct Observation of Corner States in Second-Order Topological Photonic Crystal Slabs, Phys. Rev. Lett. 122, 233902 (2019).
[32] Bi-Ye Xie, Guang-Xu Su, Hong-Fei Wang, Hai Su, Xiao-Peng Shen, Peng Zhan, Ming-Hui Lu, Zhen-Lin Wang, and Yan-Feng Chen, Visualization of Higher-Order Topological Insulating Phases in Two-Dimensional Dielectric Photonic Crystals, Phys. Rev. Lett. 122, 233903 (2019).
[33] Alexander B. Khanikaev, S. Hossein Mousavi, Wang-Kong Tse, Mehdi Kargarian, Allan H. MacDonald & Gennady Shvets, Photonic topological insulators. Nature Mater. 12, 233–239 (2013).
[34] Skirlo, S. A., Lu, L. & Soljačić, M. Multimode one-way waveguides of large Chern numbers. Phys. Rev. Lett. 113, 113904 (2014).
[35] Kraus, Y. E., Lahini, Y., Ringel, Z., Verbin, M. & Zilberberg, O. Topological states and adiabatic pumping in quasicrystals. Phys. Rev. Lett. 109, 106402 (2012).
[36] Y. Zeng, U. Chattopadhyay, B. Zhu, B. Qiang, J. Li, Y. Jin, L. Li, A. G. Davies, E. H. Linfield, B. Zhang, Y. Chong, and Q. J. Wang, Nature578, 246 (2020).
[37] John, “Strong Localization of Photons in Certain Disordered Dielectric Superlattice,” Phys. Rev. Lett., 58, p.2486(1987)
[38] Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics”, Phys. Rev. Lett.,58, p.2059(1987)
[39] María Blanco de Paz, Chiara Devescovi, Geza Giedke, Juan José Saenz, Maia G. Vergniory, Barry Bradlyn, Dario Bercioux, Aitzol García-Etxarri, “Tutorial: Computing topological invariants in two-dimensional photonic crystals”, Adv. Quantum Technol. 3, 1900117 (2020)
[40] Charles Kittel, “Introduction to Solid State Physics.” John Wiley & Sons, Inc.,7th (1996)
[41] BORN, M. Wave Propagation in Periodic Structures. Nature 158, 926 (1946).
[42] Feng, L., El-Ganainy, R. & Ge, L. Non-Hermitian photonics based on parity–time symmetry. Nature Photon 11, 752–762 (2017).
[43] Kun Ding, Z. Q. Zhang, and C. T. Chan, “Coalescence of exceptional points and phase diagrams for one-dimensional PT-symmetric photonic crystals”, Phys. Rev. B 92, 235310 (2015)
[44] David F. P. Pile. "Compact-2D FDTD for waveguides including materials with negative dielectric permittivity, magnetic permeability and refractive index" Appl. Phys. B 81, 607–613 (2005)
[45] 劉致延 (2018)。探討奈米球鏡微影術製作之多聚體結構的法諾共振與光學親手性。國立成功大學光電科學與工程學系碩論https://hdl.handle.net/11296/rv5esf
[46] 黃楚軒 (2021)。以雙曲超穎材料作為纖衣之耦合電漿波導及PT對稱之耦合介電質波導的模擬研究。國立成功大學光電科學與工程學系碩論https://hdl.handle.net/11296/47kw86
[47] Berenger, Jean Pierre, “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves,” Journal of computational physics 114(2), 185 (1994)
[48] Roden, J. Alan, and Stephen D. Gedney, “Convolutional PML (CPML): An Efficient FDTD Implementation of the CFS-PML for Arbitrary Media,” Microwave and optical technology letters, 27(5), 334-338 (2000)
[49] Wang B, CappelliMA. A plasma photonic crystal bandgap device.Applied Physics Letters, 2016, 108(16): 161101
[50] Akahane Y, Asano T, Song B S, Noda S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature, 2003, 425(6961): 944–947
[51] Bernevig B A, Hughes T L, Zhang S C. Quantum spin Hall effectand topological phase transition in HgTe quantum wells. Science, 2006, 314(5806): 1757–1761
[52] König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp LW, Qi X L, Zhang S C. Quantum spin hall insulatorstate in HgTe quantum wells. Science, 2007, 318(5851): 766–770
[53] Lipson, S. G.; Lipson, H.; Tannhauser, D. S. (1995). Optical Physics (3rd ed.). London: Cambridge U. P. pp. 248
[54] J.D. Joannopoulos, R.D. Meade, and J.N. Winn, “Photonic crystals, Molding the flow of light”, Princeton University Press, 1995.
[55] Hongfei Wang, Samit Kumar Gupta, Biye Xie & Minghui Lu, Topological photonic crystals: a review, Front. Optoelectron. 13, 50–72 (2020)
校內:2027-08-24公開