簡易檢索 / 詳目顯示

研究生: 卓勝雄
Zhuo, Sheng-Xiong
論文名稱: 對於週期性拓樸光子晶體之幾何相位性質研究
Geometric Phase Properties of 1D Periodic Topological Photonic Crystals studied by Finite-Difference Time-Domain Method
指導教授: 張世慧
Chang, Shih-Hui
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 86
中文關鍵詞: 光子晶體拓樸相位札克相位法不立-佩羅共振有限差分時域法
外文關鍵詞: photonic crystal, topological phase, Zak phase, Fabry-Perot resonant, FDTD
相關次數: 點閱:72下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自從1980年被Klitzing發現凝聚態物理中之整數量子霍爾效應(integer quantum Hall effect)以及Haldane在1988年提出量子異常霍爾效應(quantum anomalous Hall effect)並將相關研究延伸至光學系統後,拓樸絕緣體(topological insulator)之概念引起了科學界的廣泛注目。拓樸絕緣體有一特性,當具有不同拓撲數之能帶的材料相互接觸時會產生一邊緣態,並且其邊緣態可以起到拓撲保護(topological protected)作用,產生背散射抑制(back scattering)和免疫缺陷(defect)的單向傳播(unidirectional propagating)行為,對於傳播效率提升具有相當大的助益。另一方面M‧V‧Berry在1984年對於週期性固體在電子動力學領域所展現之相位性質率先定義出拓樸相位,並由J‧Zak於1989年提出了一維Berry phase在固態物理中能帶之相關拓樸特性,並在2019年Hai-Xiao Wang等人提出了Wilson loop以便在光學模擬空間中求得拓樸相位之數值解,對於光子晶體所展現之能帶結構中的拓樸性質有了明確的描述及量化,為拓樸晶體之設計及特性有更明確的認知,激發了更多後續的理論及實驗研究。
    本論文首先於FDTD模擬空間中建立了Wilson loop拓樸相位數值計算法,求得所建構之光子晶體在色散頻譜中所展現的拓樸相位性質,並且將其結果與能帶結構倒空間之第一布里淵區高對稱點之電磁場模態強度分布圖相結合,雙重驗證拓樸相位之準確性質,並且由於光子晶體可類比為無限多層法布立-佩羅共振腔系統(Fabry-Perot resonance cavity system),本論文也採用了有限多層週期性法布立-佩羅共振腔系統及單層法布立-佩羅共振腔系統之穿透頻譜,觀察在不同空氣佔比下,能帶結構與穿透頻譜的關聯性,並且在研究成果中成功預測了能帶間拓樸相位性質,從而建立一套準則,並且將以上結果擴展至二維單向週期性光子晶體結構之介面模態進行討論。最後則是重現了相關領域論文之研究結果,以期對拓樸光學模擬的研究開拓道路。

    Since Klitzing discovered the quantum Hall effect in 2D electron gas system in 1980, Haldane proposed the quantum anomalous Hall effect with no magnetic fields in 1988 and then proposed the concept to optical systems. Among these, the core concept of “topological insulators" has attracted widespread attention in recent decays. In the optical system, Wu proposed quantum spin Hall effect in 2015 and stimulated subsequent theoretical and experimental studies in photonic topological insulators.
    From the other perspective, in 1984 M. V. Berry proposed the concept of geometrical phase, which is called the "Berry phase", exhibited in the periodic solid state physics using Quantum Electrodynamics. In 1989, J. Zak proposed the 1D Berry phase in 1D solid-state system and related it to the topological properties of the energy band structure and clearly quantified it. In 2019, Wang et al. proposed the "Wilson loop" to obtain the topological phase in optical lattices.
    This work first established the Wilson loop topological phase calculation by FDTD simulation and obtain the topological phase properties exhibited in 1D photonic crystal band. We also correlated the nontrivial topological phase with symmetry inversion of mode pattern at  and X point. We also adopt the single-layer F-P resonator and multilayer Fabry-Perot resonance cavity systems to observe the correlation between the energy band structure and the transmission spectrum at different dielectric/air ratio, and successfully predicts the topological phase transition crossing energy bands. Finally, we calculate the topological properties in 2D photonic structure, in order to extend the Wilson loop FDTD approach for the photonic/plasmonic topological insulators.

    中文摘要 i 英文摘要 ii 誌謝 xi 目錄 xii 表目錄 xiv 圖目錄 xiv 第一章 緒論1 1-1 前言 1 1-2 研究動機 3 1-3 論文架構 4 第二章 研究相關理論 5 2-1 拓樸光子晶體 (Topological photonic crystals, TPCs) 5 2-1-1 拓樸學 (Topology) 5 2-1-2 週期性光子晶體 (Periodic PCs) 7 2-1-5 拓樸相位 (Topological Phase) 8 2-1-6 布洛赫理論 (Bloch’s theorem) 12 2-2 法布立-佩羅共振 (Fabry-Perot Resonance) 14 2-3 威爾森迴路法 (Wilson loop approach) 17 2-4 平面波展開法(Plane Wave Expansion method: PWE method) 21 2-5 PT對稱性質 (PT symmetry) 22 第三章 數值模擬方法 26 3-1 有限差分時域法(Finite-Difference Time-Domain method) 26 3-2 完美匹配層 (Perfect Matching Layer, PML) 29 3-3 週期性邊界條件 (Periodic Boundary Condition, PBC) 33 3-4 幾何相位計算方法 34 3-5 模擬空間 36 第四章 研究結果與討論 38 4-1 一維光子晶體之基本性質 38 4-2 一維光子晶體之拓樸相位分析 40 4-3 法布立-佩羅共振擬合一維光子晶體 46 4-4 PT性質於一維光子晶體之影響 53 4-5 二維光子晶體之基本性質 56 4-6 二維光子晶體之拓樸相位分析 59 4-7 二維光子晶體單位晶胞(unit cell)選擇對於高對稱點(HSP)之奇偶性(parity)影響 71 第五章 結論與未來展望 78 Reference 81 表目錄 表 1不同da ratio下各能帶之拓樸相位數值 40 表 2.不同da ratio下各能帶之拓樸相位數值 63 圖目錄 圖 2. 1不同幾何形狀之拓樸特性示意圖 5 圖 2. 2 Berry phase 與 Aharonov-Bohm phase 相關定義比較 11 圖 2. 3 Wilson loop 計算方法示意圖 20 圖 2. 4常見對稱性質對於玻色子(光子)及費米子(電子)之性質比較 22 圖 2. 5於非赫米特雙能階系統(two-level system)下異常點(exceptional point)特徵平面分布圖:A,實部特徵平面;B,虛部特徵平面 23 圖 2. 6於PT對稱性質下之複數折射率分布:綠色實線為實部折射率,偶對稱(even symmetry)分布;紅色實線為虛部折射率,奇對稱(odd symmetry)分布 24 圖 2. 7在不同Γ(複數折射率之虛部)下能帶結構於實部及虛部之分布行為 25 圖 2. 8在結構歷經PT對稱→PT破壞→PT對稱之變化後,於第三條能帶及第四條能帶發生拓樸相位翻轉行為 25 圖3. 1 da=0.8之能帶結構示意圖 34 圖3. 2一維光子晶體模擬結構圖,A:介電質;B:空氣 36 圖3. 3二維週期性圓柱陣列光子晶體模擬結構示意圖 37 圖3. 4二維單向週期性柱狀陣列介面模態模擬空間示意圖 37 圖4. 1不同da ratio下能帶結構示意圖。a:da=0.1,b:da=0.64 38 圖4. 2不同da ratio下能帶結構示意圖。a:da=0.667,b:da=0.68 38 圖4. 3不同da ratio下能帶結構示意圖。a:da=0.50,b:da=0.80 41 圖4. 4 da=0.6下各能帶於高對稱點下電場模態強度分布圖:(a)~(d)分別為Band 1~ Band 4。黑色實線為k=0(Γ點)之電場模態強度分布圖;紅色實線為k=π/a(X點) 之電場模態強度分布圖,藍色實線為折射率分布示意圖。 42 圖4. 5不同da ratio 下於能帶2、3高對稱點之電場模態強度對稱性質隨之變化,在能隙閉合前後其對稱性質翻轉。a:從左至右分別為da=0.64、da=0.667、da=0.68之Band 2模態強度分布圖,其高對稱點對稱性質分別為:相同、相同、不同。b:從左至右分別為da=0.64、da=0.667、da=0.68之Band 3模態強度分布圖,其高對稱點對稱性質分別為:不同、相同、相同。 43 圖4. 6不同da ratio下能隙閉合之兩能帶於高對稱點模態強度分布比較圖。a:da=0.5時,能帶3、4閉合其高對稱點模態對稱性一致(不同、不同)。b:da=0.8時,能帶3、4閉合其高對稱點模態對稱性一致(不同、不同)。 44 圖4. 7 單位晶胞以不同介質為對稱中心及激發位置位於不同介質對於Zak phase數值結果之影響 45 圖4. 8相同da ratio下一維週期性光子晶體能帶結構與多層F-P cavity 穿透頻譜比較。(a):da=0.2之光子晶體能帶結構。(b):da=0.2之多層(10層)F-P cavity與單層F-P cavity之穿透頻譜擬合及比較。黑色實線:多層F-P cavity之穿透頻譜;藍色實線:單層air-cavity之穿透頻譜;紅色實線:單層dielectric-cavity之穿透頻譜;紫色虛線:一維光子晶體各能帶高對稱點之特徵頻率處。 46 圖4. 9 da=0.60下一維週期性光子晶體能帶結構與多層F-P cavity 穿透頻譜比較。 47 圖4. 10不同da ratio之多層F-P cavity穿透頻譜與其能帶結構之比較。(a)~(d)分別為da=0.64、0.68、0.70以及0.9 49 圖4. 11 da=0.64 之高階能帶之高對稱點模態對稱性質示意圖。(a)~(d)分別為Band 5~Band 8,模態對稱性依序為:相反、相同、相反、相同。(e) da=0.64之多層F-P cavity穿透頻譜與其能帶結構(Band1~Band8)之比較 51 圖4. 12能隙閉合之da ratio多層F-P cavity穿透頻譜圖。(a)da=0.5,於band3及band4能隙閉合(b)da=0.8,於band3及band4能隙閉合。 52 圖4. 13 da=0.667時多層F-P cavity穿透頻譜圖 52 圖4. 14於非赫米特雙能階系統(two-level system)下異常點(exceptional point)特徵平面分布圖:A,實部特徵平面;B,虛部特徵平面 53 圖4. 15一維A-B lattice光子晶體結構複數折射率分布及能帶結構示意圖。(a)複數折射率分布(b)能帶結構[43] 54 圖4. 16在不同Γ(複數折射率之虛部)下能帶結構於實部及虛部之分布行為 54 圖4. 17不同偏振下二維週期性圓柱狀陣列結構之能帶結構示意圖。(a)TM偏振之模擬結果(b)TE偏振之模擬結果(c)理論結果[54] 56 圖4. 18不同ra ratio之前四條三維能帶結構示意圖。從左至右分別為:ra=0.2、ra=0.3、ra=0.4之能帶結構。 57 圖4. 19不同ra ratio 之高對稱點(HSP)路徑能帶結構示意圖。從左至右分別為:ra=0.2、ra=0.3、ra=0.4之高對稱點路徑能帶結構。 57 圖4. 20陳數(Chern number)於二維布里淵區之表現形式及相關定義。(a)(b)分別為不同論文對陳數之描述方法 59 圖4. 21於TE偏振下不同ra ratio之不同能帶所展現之二維Berry phase 計算結果。 61 圖4. 22不同da ratio下二維單向週期性柱狀陣列結構之能帶結構示意圖。(a)從左至右分別為da=0.2、da=0.6、da=0.8之能帶結構(b)da=0.66之能帶結構,可觀察到band2及band3間能隙閉合 62 圖4. 23不同da ratio之前四條能帶特徵頻率示意圖,可觀察到band2及band3之間的能隙在da=0.66前後經歷open→close→reopen之過程。 63 圖4. 24 da=0.2各能帶之高對稱點(Γ、X)結構模態強度分布圖。(a)~(d)分別為Band 1~ Band 4,每一能帶從上至下為Hz、Ex、Ey之個別分量結構模態強度分布圖;每一分量分別有Γ、X點模態強度分布圖之比較;每一高對稱點從左至右之模態強度分布圖分別為實部、虛部、絕對值之強度分布。 66 圖4. 25 da=0.6各能帶Hz分量之高對稱點(Γ、X)結構模態強度分布圖。(a)~(d)分別為Band 1~ Band 4模態強度分布圖。 68 圖4. 26 da=0.66 Band 2&Band 3 Hz分量之高對稱點(Γ、X)結構模態強度分布圖。(a)&(b)分別為Band 1& Band 2模態強度分布圖。 68 圖4. 27 da=0.8 Band 2&Band 3 Hz分量之高對稱點(Γ、X)結構模態強度分布圖。(a)&(b)分別為Band 1& Band 2模態強度分布圖。 69 圖4. 28 da=0.6 & da=0.8 之Band 1 Hz分量之高對稱點(Γ、X)結構模態強度分布圖。a)&(b)分別為da=0.8 & da=0.6 之Band 1模態強度分布圖。 70 圖4. 29於二維週期性柱狀陣列光子晶體改變單位晶胞(unit cell)中心點位置所觀察到在第一條能帶高對稱點之電場模態奇偶性(parity)發生變化。(a)光子晶體結構示意圖(b)將單位晶胞中心點往x/y軸移動後所定義之四種單位晶胞(c)四種單位晶胞所組成之有限層光子晶體結構(d)四種單位晶胞所組成之週期性光子晶體能帶結構示意圖,可發現單位晶胞雖不同,但其能帶特性相同(e)四種單位晶胞於第一條能帶高對稱點所展示之電場模態強度分布圖[28] 71 圖4. 30二維週期性圓柱陣列光子晶體高對稱點路徑之能帶結構示意圖。 72 圖4. 31 UC1之結構示意圖及高對稱點電場模態強度分度圖 72 圖4. 32 (a)UC2之結構示意圖及高對稱點電場模態強度分度圖(b)UC3之結構示意圖及高對稱點電場模態強度分度圖。 74 圖4. 33 UC4之結構示意圖及高對稱點電場模態強度分度圖 75 圖4. 34 不同單位晶胞之二維布里淵區拓樸相位數值計算結果及陳數(Chern number)之判別。(a)~(d)分別為UC1~UC4之單位晶胞結構(上圖)及拓樸相位結果(下圖) 76 圖4. 35 藉由將不同單位晶胞排列組合後所觀察到的拓樸邊界態(Topological edge state :TES)及拓樸角態(Topological corner state :TCS)現象。(a)TES (b)TCS[28] 77

    [1] Ling Lu*, John D. Joannopoulos and Marin Soljačić, “Topological photonics”, Nature Photonics volume 8, pages821–829 (2014)
    [2] Pickover, Clifford A., “The Möbius Strip: Dr. August Möbius's Marvelous Band in Mathematics, Games, Literature, Art, Technology, and Cosmology,” Thunder's Mouth Press (2006)
    [3] L. S. Pontryagin, Arlen Brown, P. S. V. Naidu, “Topological Groups,” Routledge, 3rd Edition, 14 December (2018)
    [4] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, “Quantized Hall Conductance in a Two-Dimensional Periodic Potential”,Phys. Rev. Lett., 1982, 49:405
    [5] Klitzing K. V., Dorda, G. & Pepper, M. Phys. Rev. Lett., 1980, 45: 494
    [6] Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljačić., M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).
    [7] Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).
    [8] Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Robust optical delay lines with topological protection. Nature Phys. 7, 907–912 (2011).
    [9] Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological edge states in silicon photonics. Nature Photon. 7, 1001–1005 (2013).
    [10] Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010)
    [11] Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011)
    [12] Kane C L, Mele E J. Quantum spin Hall effect in graphene.Physical Review Letters, 2005, 95(22): 226801
    [13] Bernevig B A, Zhang S C. Quantum spin Hall effect. Physical Review Letters, 2006, 96(10): 106802
    [14] Mei et al, “Pseudo-Time-Reversal Symmetry and Topological Edge States in Two-Dimensional Acoustic Crystals,” Scientific Reports volume 6, Article number: 32752 (2016)
    [15] Long-Hua Wu, Xiao Hu, “Scheme for Achieving a Topological Photonic Crystal by Using Dielectric Material,” Phys. Rev. Lett. 114, 223901 (2015)
    [16] Qiu et al, “Pseudospin Dependent One-Way Transmission in Graphene-Based Topological Plasmonic Crystals,” Nanoscale Research Letters 13:113 (2018)
    [17] Barik et al, “Two-Dimensionally Confined Topological Edge States in Photonic Crystals,” New Journal of Physics 18, 113013 (2016)
    [18] Chen et al, “Self-Ordering Induces Multiple Topological Transitions for In-Plane Bulk Waves in Solid Phononic Crystals,” Physical review B 98, 014302 (2018)
    [19] Ming-Che Chang and Qian Niu, “Berry curvature, orbital moment, and effective quantum theory of electrons in electromagnetic fields”, J. Phys.: Condens. Matter 20 (2008) 193202 (17pp)
    [20] Di Xiao, Ming-Che Chang, Qian Niu, “Berry phase effects on electronic properties”
    [21] Haldane, F. D. M. Model for a quantum Hall effect without landau levels: Condensed-matter realization of the ‘parity anomaly’. Phys. Rev. Lett. 61, 2015–2018 (1988).
    [22] Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).
    [23] Raghu, S. & Haldane, F. D. M. Analogs of quantum Hall effect edge states in photonic crystals. Phys. Rev. A 78, 033834 (2008).
    [24] Wang, Z., Chong, Y. D., Joannopoulos, J. D. & Marin Soljačić. Reflection-free one-way edge modes in a gyromagnetic photonic crystal. Phys. Rev. Lett. 100, 013905 (2008).
    [25] M. V. Berry, Quantal Phase Factors Accompanying Adiabatic Changes, Proc. Roy. Soc. London A 392, 451 (1984)
    [26] J. Zak, Berry's Phase for Energy Bands in Solids, Phys. Rev. Lett. 62, 2747 (1989).
    [27] Hai-Xiao Wang, Guang-Yu Guo and Jian-Hua Jiang, Band topology in classical waves: Wilson-loop approach to topological numbers and fragile topology, 2019 New J. Phys. 21 093029
    [28] Aoqian Shi, Bei Yan, Rui Ge, Jianlan Xie, Yuchen Peng, Hang Li, Wei E. I. Sha,
    AND Jian jun Liu, Coupled cavity-waveguide based on topological corner state and edge state, Optics Letters, 46(5): 1089-1092 (2021)
    [29] F. Liu and K. Wakabayashi, Novel Topological Phase with a Zero Berry Curvature,
    Phys. Rev. Lett. 118, 076803 (2017).
    [30] Y. Zeng, U. Chattopadhyay, B. Zhu, B. Qiang, J. Li, Y. Jin, L. Li, A. G. Davies, E. H. Linfield, B. Zhang, Y. Chong, and Q. J. Wang, Electrically pumped topological laser with valley edge modes, Nature 578, 246 (2020).
    [31] Xiao-Dong Chen, Wei-Min Deng, Fu-Long Shi, Fu-Li Zhao, Min Chen, and Jian-Wen Dong, Direct Observation of Corner States in Second-Order Topological Photonic Crystal Slabs, Phys. Rev. Lett. 122, 233902 (2019).
    [32] Bi-Ye Xie, Guang-Xu Su, Hong-Fei Wang, Hai Su, Xiao-Peng Shen, Peng Zhan, Ming-Hui Lu, Zhen-Lin Wang, and Yan-Feng Chen, Visualization of Higher-Order Topological Insulating Phases in Two-Dimensional Dielectric Photonic Crystals, Phys. Rev. Lett. 122, 233903 (2019).
    [33] Alexander B. Khanikaev, S. Hossein Mousavi, Wang-Kong Tse, Mehdi Kargarian, Allan H. MacDonald & Gennady Shvets, Photonic topological insulators. Nature Mater. 12, 233–239 (2013).
    [34] Skirlo, S. A., Lu, L. & Soljačić, M. Multimode one-way waveguides of large Chern numbers. Phys. Rev. Lett. 113, 113904 (2014).
    [35] Kraus, Y. E., Lahini, Y., Ringel, Z., Verbin, M. & Zilberberg, O. Topological states and adiabatic pumping in quasicrystals. Phys. Rev. Lett. 109, 106402 (2012).
    [36] Y. Zeng, U. Chattopadhyay, B. Zhu, B. Qiang, J. Li, Y. Jin, L. Li, A. G. Davies, E. H. Linfield, B. Zhang, Y. Chong, and Q. J. Wang, Nature578, 246 (2020).
    [37] John, “Strong Localization of Photons in Certain Disordered Dielectric Superlattice,” Phys. Rev. Lett., 58, p.2486(1987)
    [38] Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics”, Phys. Rev. Lett.,58, p.2059(1987)
    [39] María Blanco de Paz, Chiara Devescovi, Geza Giedke, Juan José Saenz, Maia G. Vergniory, Barry Bradlyn, Dario Bercioux, Aitzol García-Etxarri, “Tutorial: Computing topological invariants in two-dimensional photonic crystals”, Adv. Quantum Technol. 3, 1900117 (2020)
    [40] Charles Kittel, “Introduction to Solid State Physics.” John Wiley & Sons, Inc.,7th (1996)
    [41] BORN, M. Wave Propagation in Periodic Structures. Nature 158, 926 (1946).
    [42] Feng, L., El-Ganainy, R. & Ge, L. Non-Hermitian photonics based on parity–time symmetry. Nature Photon 11, 752–762 (2017).
    [43] Kun Ding, Z. Q. Zhang, and C. T. Chan, “Coalescence of exceptional points and phase diagrams for one-dimensional PT-symmetric photonic crystals”, Phys. Rev. B 92, 235310 (2015)
    [44] David F. P. Pile. "Compact-2D FDTD for waveguides including materials with negative dielectric permittivity, magnetic permeability and refractive index" Appl. Phys. B 81, 607–613 (2005)
    [45] 劉致延 (2018)。探討奈米球鏡微影術製作之多聚體結構的法諾共振與光學親手性。國立成功大學光電科學與工程學系碩論https://hdl.handle.net/11296/rv5esf
    [46] 黃楚軒 (2021)。以雙曲超穎材料作為纖衣之耦合電漿波導及PT對稱之耦合介電質波導的模擬研究。國立成功大學光電科學與工程學系碩論https://hdl.handle.net/11296/47kw86
    [47] Berenger, Jean Pierre, “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves,” Journal of computational physics 114(2), 185 (1994)
    [48] Roden, J. Alan, and Stephen D. Gedney, “Convolutional PML (CPML): An Efficient FDTD Implementation of the CFS-PML for Arbitrary Media,” Microwave and optical technology letters, 27(5), 334-338 (2000)
    [49] Wang B, CappelliMA. A plasma photonic crystal bandgap device.Applied Physics Letters, 2016, 108(16): 161101
    [50] Akahane Y, Asano T, Song B S, Noda S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature, 2003, 425(6961): 944–947
    [51] Bernevig B A, Hughes T L, Zhang S C. Quantum spin Hall effectand topological phase transition in HgTe quantum wells. Science, 2006, 314(5806): 1757–1761
    [52] König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp LW, Qi X L, Zhang S C. Quantum spin hall insulatorstate in HgTe quantum wells. Science, 2007, 318(5851): 766–770
    [53] Lipson, S. G.; Lipson, H.; Tannhauser, D. S. (1995). Optical Physics (3rd ed.). London: Cambridge U. P. pp. 248
    [54] J.D. Joannopoulos, R.D. Meade, and J.N. Winn, “Photonic crystals, Molding the flow of light”, Princeton University Press, 1995.
    [55] Hongfei Wang, Samit Kumar Gupta, Biye Xie & Minghui Lu, Topological photonic crystals: a review, Front. Optoelectron. 13, 50–72 (2020)

    無法下載圖示 校內:2027-08-24公開
    校外:2027-08-24公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE