簡易檢索 / 詳目顯示

研究生: 蔡傅守
Tsai, Fu-Shou
論文名稱: 氧化鋅基奈米結構之研製及其於紫外光、濕度與酸鹼值感測器之應用研究
Fabrication and Characterization of ZnO-based nanostructures and their applications on ultra violet, humidity, and pH sensors
指導教授: 王水進
Wang, Shiu-Jinn
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2013
畢業學年度: 102
語文別: 英文
論文頁數: 128
中文關鍵詞: 氧化鋅二氧化鈦pn異質接面結構奈米線奈米片延伸閘極場效電晶體紫外光感測器濕度感測器酸鹼值感測器
外文關鍵詞: ZnO, TiO2, pn heterojuntion, Nanowire, Nanosheet, Extended-gate FET, UV sensor, Humidity sensor, pH sensor
相關次數: 點閱:125下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在探討氧化鋅基奈米結構之開發及其於紫外光、濕度與酸鹼度感測器之應用,相較於傳統金屬氧化物薄膜之感測單元,奈米結構能提供較高之表面體積比、量子效應與較大之吸/脫附範圍;其中,以水熱法製備之一維氧化鋅奈米線基元件較薄膜基元件具較高之表面體積比,有益於感測吸附性能之提升。本論文將深入探討所開發感測元件於不同光強度紫外光、各種濕度及酸鹼度等特定環境下,其相關電特性、感測效能及動態行為。
    首先於第二章中,藉由n型氧化鋅奈米線,以傾斜角度沉積之p型氧化錫薄膜所製備之奈米異質接面,將探討其於紫外光照下之光電特性;奈米異質接面之p型薄膜利用傾斜角度射頻濺鍍沉積而成,垂直且整齊之氧化鋅奈米線則以水熱法成長製備,所開發之氧化錫/氧化鋅奈米線奈米異質接面陣列,氧化錫薄膜厚度範圍為50~1000 nm,擁有良好之整流電特性與優異的紫外光(254 nm)響應,其響應能力(光照與暗室環境下之電流比值)約為8.5倍,響應時間與復歸時間約為5秒與20秒。
    於第三章中,我們使用水熱法成長多級水平式氧化鋅奈米線串接結構,作為奈米光電感測元件應用;藉由鹽酸溶液對奈米線進行表面粗化製程,有效增進紫外光響應與抗反射之功效。實驗結果顯示,其於紫外光(366 nm)照下之響應能力(光照與暗室環境下之電流比值)約為2.4倍,響應時間與復歸時間約為10秒與32秒。
    於第四章中,我們以水熱法製備之水平氧化鋅奈米線做為感測單元,並應用室溫操作之濕度感測應用,所開發元件之響應能力(濕度12%與96%環境下之電阻值比值)約為2.2倍,並有良好之線性濕度感測度,此特性主因係所提出之水平氧化鋅奈米線結構於感測時整體性之應用,因濕度感測時電流傳導路徑與水平奈米線之兩者方向與相對性關係互為一致,其響應(水分子脫附)/復歸(水分子吸附)時間於96-12-96% RH 與 96-33-96% RH約為33分/31秒與27分/56秒。
    接著,於第五章中,為提升濕度感測效能,我們開發出氧化鋅奈米片,將其應用於室溫濕度感測元件,經由量測分析顯示,其響應能力(濕度12%與96%環境下之電阻值比值)約為220倍,且於12~96% RH範圍間有良好線性響應,而其快速響應時間為600秒,復歸時間為3秒;相較於以氧化鋅奈米線做為感測單元之濕度感測元件,氧化鋅奈米片基感測元件提供將近100倍之特性增進,其改善機制為氧化鋅奈米片有較高之表面體積比以及類多孔隙之奈米片表面結構。
    於第六章中,我們將氧化鋅奈米片應用於延伸式閘極之酸鹼感測場效電晶體,可得一近乎線性之汲極電流(IDS @ VDS= 5 V 與 Vref= 3 V)依酸鹼度而引致變化量0.026 mA/pH,所開發酸鹼度感測元件具約25 mV/pH (@ IDS= 0.1 mA 與VDS= 0.2 V)之感測效能,本元件之優勢在於其提供較大之感測面積,並增加元件操作時之氧相關束縛態位,但對於氧化鋅基材料應用於參考電極仍有諸多劣勢,如其較差之酸鹼度可耐性、低感測響應與低穩定度等;高度耐酸鹼之金屬氧化物奈米結構仍有其必要性並亟需深入開發與研究。
    最後,於第七章中,我們使用水熱法製備垂直成長之二氧化鈦奈米線,其相較氧化鋅有較適化於酸鹼檢測應用,因其有較高之耐酸鹼特性;二氧化鈦奈米線應用於延伸式閘極之部分並連結場效電晶體作為酸鹼感測之應用,仍可獲一近乎線性之汲極電流(IDS @ VDS= 5 V 與 Vref= 3 V)依酸鹼度而引致變化量0.063 mA/pH,所開發酸鹼度感測元件約具62 mV/pH (@ IDS= 0.1 mA 與VDS= 0.2 V)之感測效能,此感測能力約為氧化鋅奈米片基酸鹼感測場效電晶體之兩倍效能提升,相信此係因二氧化鈦具較高之耐酸鹼特性引致。
    於第八章中,針對所開發之高效能金屬氧化物半導體基紫外光、濕度與酸鹼感測特性做一總結;數種感測單元如氧化鋅奈米線/氧化錫二極體、具表面粗化多級串接水平成長氧化鋅奈米線、水平與垂直方向成長之氧化鋅奈米片與垂直成長二氧化鈦奈米線,目前已成功製備並深入探討,擅用適當奈米材料與元件結構之特性,可有效獲得一顯著感測能力增進;為使感測效能增益與可長時間持續操作穩定性,將提出數項未來可深入開發與研製之項目。本論文所開發與研製之金屬氧化物奈米結構基感測器,於適度之製程參數調變下,將對未來紫外光、濕度、酸鹼度甚至生物感測元件應用有相當助益之幫助。

    The dissertation aims at the preparation of ZnO-based nanostructure and theirs applications on UV, humidity, and pH sensing fields. Comparison with traditional metal oxide-based film type sensing element, nanostructures could provide larger surface to volume ratio, quantum size effect, and higher adsorption/desorption area. In addition, hydrothermal growth of one-dimensional (1-D) ZnO nanowire-based device possesses a much higher surface to volume ratio than thin film-based device. It is very beneficial to the adsorption of sensing goal. The related electric characteristics, sensing performance, and dynamic behaviors of these sensors measured under different UV light power of 0~6 mW/cm2, various relative humidity environments of 12~96%, and pH value within range of 2~12 are presented and discussed.
    At first, in the second chapter of the present desseration, through the use of n-ZnO NWs and oblique deposition p-SnO-film nano hetero junction for UV detection are studied and demonstrated. Nano-heterojunction arrays (NHAs) were formed via the oblique-angle sputtering deposition of p-type tin monoxide onto vertically aligned ZnO NWs grown by hydrothermal growth (HTG). The prepared SnO/ZnO NW NHAs with different SnO thicknesses (50~1000 nm) have rectifying current-voltage characteristics, and superior response to UV (254 nm) light illumination with UV sensitivity (IUV/Idark) as high as 8.5 and rise/fall time of ~5/20 s were obtained.
    In the third chapter, the use of a series connection of lateral ZnO NWs for nano optoelectronic sensors prepared by HTG is proposed. A surface roughening using dilute HCl solution to promote UV response and antireflection properties is investigated and experimental results are demonstrated. An UV (366 nm) sensing response (IUV/Idark) as high as 2.4 and response/recovery time as low as 10/32 s were obtained.
    In the fourth chapter, the use of laterally oriented ZnO NWs grown by a HTG method for relative-humidity (RH) sensing devices at room temperature (RT) is demonstrated. A humidity sensor based on laterally oriented ZnO NWs with a sensing response (R12%/R96%) as high as 2.2 was obtained at RT. The comparably good sensitivity of the proposed humidity sensors is attributed to the full utilization of the entire NW surface, because the current path is aligned with the orientation of the bridged lateral ZnO NWs during the humidity sensing application. Response/recovery time was estimated to be approximately 33 min/31 s and 27 min/56 s for the cases of 96-12-96% RH and 96-33-96% RH, respectively.
    In the fifth chapter, through the use of prepared ZnO NSs for RH sensing devices at RT are proposed and investigated. A sensing response (R12%/R96%) at RT of as high as 220, good sensing linearity in the range of 12~96% RH, a fast sensing response time of as low as 600 s, and a recovery time of 3 s are achieved. Compared to ZnO NW-based humidity sensors, a 100-fold improvement in the sensing response at RT was obtained, which is mainly attributed to the ZnO NSs having a much higher surface-to-volume ratio and a porous-like surface.
    Furthermore, in the sixth chapter, ZnO nanosheets (NSs) were prepared to serve as sensing element for extended-gate (EG) field effect transistor (EG-FET) pH Sensors. A closed linear relationshipd between IDS (@ VDS= 5 V and Vref= 3 V) and pH levels in the range of 2-12 with a slope of about 0.026 mA/pH is obtained. The sensitivity of the EG-FET pH sensors with ZnO NSs is as high as 25 mV/pH (@ IDS= 0.1 mA and VDS= 0.2 V), which is attributed to the sheet morphology providing a larger sensing area and increased oxygen-related binding sites during pH sensing. There are still many drawbacks of the ZnO-based reference electrode, such as its worse acid alkali tolerant, low sensing response and low stability. Metal oxide sensing nanostructure with higher acid alkali tolerant is still needed and further researched.
    In the seventh chapter, we used the facile HTG method for the growth of vertical TiO2 NWs. TiO2 is much suitable than ZnO for pH sensing application due to its higher acid alkali tolerant. The prepared TiO2 NWs as the EG electrode in EG-FET is proposed for pH sensing. A closed linear relationshipd between IDS (@ VDS= 5 V and Vref= 3 V) and pH levels in the range of 2-12 with a slope of about 0.063 mA/pH is obtained. The sensitivity of the EG-FET pH sensors with TiO2 NWs is as high as 62 mV/pH (@ IDS= 0.1 mA and VDS= 0.2 V). The sensing response has been improved about 2 times of the ZnO NSs-based EGFET pH sensors (25 mV/pH), which are attributed to the TiO2 with higher acid alkali tolerant than ZnO material.
    Finally, in the eighth chapter, conclusions of a series of high-performance metal oxide semiconductor based UV, humidity, and pH sensing properties are made. The improved performance of several types of sensing element, including the ZnO NWs/SnO diode, the serious connected roughed laterally grown ZnO NWs, the laterally and vertically grown ZnO NSs, and the vertically grown TiO2 NWs are summarized. Improvement in sensing ability through the use of appropriate nanostructure and device structure is also highlighted. Suggestions for further enhancing the sensing performance and improving the long-term operating stability continuously are proposed. It is expected that the proposed metal oxide nanostructure based sensors with a suitable fabrication processes tuning could be an effective mean for future UV, humidity, pH and further bio sensing applications.

    Abstract (in Chinese)………………………………i Abstract (in English)………………………………v Acknowledgement……………………………… Contents………………………………xi Figure Captions………………………………xvi Table Captions………………………………xxii Chapter 1 Introduction 1.1 Overviews of Nanotechnology………………………………1 1-1-1 Definition of Nanotechnology………………………………1 1-1-2 Electronic Properties of Nano Materials.………………………………4 1-1-3 Physics of Nano Materials………………………………7 1.2 Hydrothermal Growth Methods of Nanostructure………………8 1-2-1 HTG of ZnO Nanowries………………………………12 1-2-2 HTG of ZnO Nanosheets………………………………13 1-2-3 HTG of TiO2 Nanowries………………………………15 1.3 Introduction of Metal Oxides………………………………17 1-3-1 Introduction of ZnO Material………………………………17 1-3-2 Introduction of SnO Material………………………………20 1-3-3 Introduction of TiO2 Material………………………………20 1.4 Motivations and Thesis Organization………………………………21 1.5 Theoritical Background of Sensors………………………………24 1-5-1 Photodetectors………………………………24 1-5-2 Humidity Sensors………………………………25 1-5-3 pH Sensors………………………………26 Chapter 2 Preparation of p-SnO/n-ZnO heterojunction nanowire arrays and their optoelectronic characteristics under UV illumination 2.1 Introduction………………………………28 2.2 Device Structure and Fabrication………………………………29 2-2-1 Growth of ZnO NWs and Device Fabrication………………………………29 2-2-2 Material Analysis and UV Measurement………………………………31 2.3 Experimental Results and Discussion………………………………32 2-3-1 Material and Structure Analyses………………………………32 2-3-2 UV-Sensing Mechanism……………………………… 2-3-3 UV-Sensing Characteristics………………………………36 2-3-4 Transient Response………………………………38 2.4 Summary………………………………39 Chapter 3 Ultraviolet sensors based on series connection and surface roughing treatment of laterally-grown ZnO nanowires by hydrothermal growth 3.1 Introduction………………………………40 3.2 Device Structure and Fabrication………………………………42 3-2-1 Growth of ZnO NWs and Device Fabrication………………………………42 3-2-2 Material Analysis and UV Measurement………………………………44 3.3 Experimental Results and Discussion………………………………44 3-3-1 Material and Structure Analyses………………………………44 3-3-2 UV-Sensing Mechanism and Characteristics………………………………47 3-3-3 Transient Response………………………………49 3.4 Summary………………………………51 Chapter 4 Preparation and characteristic of relative-humidity sensors based on laterally grown ZnO nanowires 4.1 Introduction………………………………53 4.2 Device Structure and Fabrication………………………………55 4-2-1 Growth of ZnO NWs and Device Fabrication………………………………55 4-2-2 Humidity Measurement………………………………57 4-2-3 Material Analysis………………………………58 4.3 Experimental Results and Discussion………………………………58 4-3-1 Material and Structure Analyses………………………………59 4-3-2 Humidity-Sensing Mechanism and Characteristics………………62 4-3-3 Transient Response………………………………65 4.4 Summary………………………………66 Chapter 5 Enhanced sensing performance of relative humidity sensors using laterally grown ZnO nanosheets 5.1 Introduction………………………………68 5.2 Device Structure and Fabrication………………………………70 5-2-1 Growth of ZnO NSs and Device Fabrication………………………………70 5-2-2 Humidity Measurement………………………………72 5-2-3 Material Analysis………………………………74 5.3 Experimental Results and Discussion………………………………74 5-3-1 Material and Structure Analyses………………………………74 5-3-2 Humidity-Sensing Characteristics………………………………78 5-3-3 Transient Response and Humidity Sensing Mechanism………80 5.4 Selectivity and Long-term Stability………………………………84 5.5 Summary………………………………85 Chapter 6 Extended-gate field effect transistor pH Sensors based on vertical ZnO nanosheets sensing element 6.1 Introduction………………………………87 6.2 Device Structure and Fabrication………………………………88 6-2-1 Growth of ZnO NSs and Device Fabrication………………………………88 6-2-2 pH Measurement………………………………89 6-2-3 Material Analysis………………………………90 6.3 Experimental Results and Discussion………………………………90 6-3-1 Material and Structure Analyses………………………………90 6-3-2 pH-Sensing Characteristics………………………………96 6-3-3 pH-Sensing Linearity………………………………96 6.4 Summary………………………………98 Chapter 7 Preparation of TiO2 nanowire arrays and their pH sensing characteristics 7.1 Introduction………………………………99 7.2 Device Structure and Fabrication………………………………100 7-2-1 Growth of TiO2 NWs and Device Fabrication…………………………100 7-2-2 pH Measurement………………………………101 7-2-3 Material Analysis………………………………102 7.3 Experimental Results and Discussion………………………………102 7-3-1 Material and Structure Analyses………………………………102 7-3-2 pH-Sensing Characteristics………………………………105 7-3-3 pH-Sensing Linearity………………………………107 7.4 Summary………………………………109 Chapter 8 Conclusions and prospect 8.1 Conclusions………………………………110 8.2 Suggestions for Future Study………………………………113 References………………………………114 Publication List………………………………125 Vita………………………………129

    [1] R.P. Feynman, American Physical Society meeting at the California Institute of Technology December 29 (1959).
    [2] G. Elling, M. Director, Deutsche Bank Technology Group, “THE NANOTECH REPORT 2003”, Investment Overview and Market Research for Nanotechnology (Volume II).
    [3] NRC Report: Small Wonders, Endless Frontiers: Review of the National Nanotechnology Initiative (National Research Council, July (2002)).
    [4] S. Iijima, Nature 354 (1991) 56.
    [5] http://www.tipmagazine.com/tip/INPHFA/vol-10/iss-1/p24.html
    [6] T. Kato, G.H. Jeong, T. Hirata, R. Hatakeyama, K. Tohji, and K. Motomiya, Chem. Phys. Lett. 381 (2003) 422.
    [7] S.Y. Chen, H.Y. Miao, J.T. Lue, and M.S. Ouyang, J. Phys. D: Appl. Phys. 37 (2004) 273.
    [8] R. Waser, Nanoelectronics and Information Technology, Wiley, Germany (2003).
    [9] E. Roduner, Physics and chemistry of nanostructures: why nano is different, NANOSCIENCES AND NANOTECHNOLOGIES.
    [10] J.L. Costa-Krämer, N. Garcia and H. Olin, Phys. Rev. Lett. 78 (1997) 4990.
    [11] J. Zhao, C. Buia, J. Han and J.P. Lu, Nanotechnology 14 (2003) 501.
    [12] P.C. Chang, C.J. Chien, D. Sitchtenoth, C. Ronning and J.G. Lu, Appl. Phys. Lett. 90 (2007) 113101.
    [13] Y. Cui, Z. Zhong, D. Wang, W.U. Wang and C.M. Lieber, Nano Lett. 3 (2003) 149.
    [14] A. Motayed M. Vaudin, A.V. Davydov, John Melngailis, M. He, and S.N. Mohammad, Appl. Phys. Lett. 90 (2007) 043104.
    [15] H. Grabert and M. Devoret, Single Electron Tunneling, Plenum Press, New York (1992).
    [16] S.H. Wang, T.C. Chou, and C.C. Liu, Sens. and Actuators B 94 (2003) 343.
    [17] C. Bock, C. Paquet, M. Couillard, G.A. Botton, and B.R. MacDougall, J. Am. Chem. Soc. 126 (2004) 8028.
    [18] S.C. Lyell, A Manual of Elementary Geology 5th ed. (Boston, Massachusetts: Little, Brown, and Company, 1855).
    [19] R.A. Laudise, C&EN September 28 (1986) 30.
    [20]http://www.roditi.com/SingleCrystal/Quartz/Hydrothermal_Growth.html
    [21] G. Spezia, Accad. Sci. Torino Atti 40 (1905) 254.
    [22] R.A. Laudise, Growth and perfection of crystals (1959) 458.
    [23] L. Vayssieres, N. Beermann, S.E. Lindquist, Chem. Mater. 13 (2001) 233.
    [24] L. Vayssieres, K. Keis, S.E. Lindquist, Chem. Mater. 13 (2001) 4395.
    [25] L. Vayssieres, J.H. Guo, J. Nanosci., Nanotechnol. 1 (2001) 385.
    [26] L. Vayssieres, L. Rabenberg, A. Manthiram, Nano Lett. 1393 (2002) 2.
    [27] A. Wei, X.W. Sun, C.X. Xu, Z.L. Dong, Y. Yang, S.T. Tan, and W. Huang, Nanotechnology 17 (6) (2006) 1740.
    [28] X.Y. Zhang, J.Y. Dai, H.C. Ong, N. Wang, H.L. W. Chan, and C.L. Choy, Chem. Phys. Lett. 393 (2004) 17.
    [29] T.R. Zhang, W.J. Dong, R.N. Njabon, V.K. Varadan, and Z.R. Tian, J. Phys. Chem. C 111(37) (2007) 13691.
    [30] J. Liu, X. Huang, Y. Li, J. Duan, and H. Ai, Mater. Chem. Phys. 98 (2006) 523.
    [31] S.W. Liu, C. Li, J.G. Yu, and Q.J. Xiang, CRYSTENGCOMM 13 (7) (2011) 2533.
    [32] J.B. Liang, J.W. Liu, Q. Xie, S. Bai, W.C. Yu, and Y.T. Qian, J. Phys. Chem. B 109 (2005) 9463.
    [33] S. Baruah and J. Dutta, Sci. Technol. Adv. Mater. 10 (2009) 013001-1.
    [34] K. Kakiuchi, E. Hosono, T. Kimura, H. Imai, and S. Fujihara, J. Sol-Gel Sci. Techn. 39 (2006) 63.
    [35] J. Li, H.Q. Fan, and X.H. Jia, J. Phys. Chem. C 114 (2010) 14684.
    [36] X.F. Zhou, Z.L. Hu, Y.Q. Fan, S. Chen, W.P. Ding, and N.P. Xu, J. Phys. Chem. C 112 (2008) 11722.
    [37] J.R. Hou, Adv. Mat. Res. 721 (2013) 241.
    [38] A. Kumar, A.R. Madaria, and C.W. Zhou, J. Phys. Chem. C 114 (2010) 7787.
    [39] B. Liu, E.S. Aydil, J. Am. Chem. Soc. 131 (2009) 3985.
    [40] A. Kumar, A.R. Madaria, C. W. Zhou, J. Phys. Chem. C 114 (2010) 7787.
    [41] B.J. Morgan, G.W. Watson, J. Phys. Chem. C 113 (2009) 7322.
    [42] J.M. Hvam, J. Appl. Phys. 49 (6) (1978) 3124.
    [43] L.D.C, Mater. Sci. and Eng. B, 80 (2001) 383.
    [44] F. Solis-Pomar, E. Martinez, M. F. Melendrez, and E. Perez-Tijerina, Nanoscale Res. Lett. 6 (2011) 548.
    [45] H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, J. Appl. Phys. 76 (1994) 1363.
    [46] A.F. M. Anwar, S.L. Wu, and R.T. Webster, IEEE Trans. Electron Dev. 48 (3) (2001) 567.
    [47] D.C. Look, D.C. Reynolds, J.R. Sizelove, R.L. Jones, C.W. Litton, G. Cantwell, and W.C. Harsch, Solid State Commun.105 (6) (1998) 399.
    [48] W. Pan, ACS NANO 2 (2008) 1987.
    [49] J.H. Song, X.D. Wang, J. Liu, H.B. Liu, Y.L. Li and Z.L. Wang, Nano Lett. 8 (2008) 203.
    [50] X.D. Wang, J. Liu, J.H. Song and Z.L. Wang, Nano Lett. 7 (2007) 2475.
    [51] Y. Gao and Z.L. Wang, Nano Lett 7 (2007) 2499.
    [52] Z.L. Wang and J.H. Song, Science 312 (2006) 242.
    [53] Z.L. Wang, Mater. Today 7 (2004) 26.
    [54] W. Guo, L. Fu, Y. Zhang, K. Zhang, L.Y. Liang, Z.M. Liu, H.T. Cao, and X.Q. Pan, Appl. Phys. Lett. 96 (2010) 042113.
    [55] P.C. Hsu, W.C. Chen, Y.T. Tsai, Y.C. Kung, C.H. Chang, C.J. Hsu, C.C. Wu, and H.H. Hsieh, Jpn. J. Appl. Phys. 52 (2013) 05DC07.
    [56] Y. Kim, J.H. Jang, J.S. Kim, S.D. Kim, and S.E. Kim, Mater. Sci. Eng. B 177 (2012) 1470.
    [57] L.Y. Liang, Z.M. Liu, H.T. Cao, Z. Yu, Y.Y. Shi, A.H. Chen, H.Z. Zhang, Y.Q. Fang, and X.L. Sun, J. Electrochem. Soc. 157 (6) (2010) H598.
    [58] R.H. Austin and S.F. Lim, PNAS 105 (45) 17217.
    [59] R. Janisch, P.Gopal, and N.A. Spaldin, J. Phys. Condens. Matter 17 (2005) R657.
    [60] S.U.M. Khan, M. Al-Shahry, and W.B. Ingler Jr., Science 297 (2002) 2243.
    [61] H.Dr.V. Gavryushin, Functional combinations in solid states, Radiative Transitions Photoconductor (2006).
    [62] Silicon Photodiode Theory, http://www.centronic.co.uk/downloads/3-1-6%20photodiode %20theory.pdf.
    [63] W.P. Tai and J.H. Oh, J. Mater. Sci.: Mater. Electron. 13 (2002) 391.
    [64] P.K. Kannan, R. Saraswathi, and J.B. B. Rayappan, Sens. Actuators A 164 (2010) 8.
    [65] Y. Shimizu, H. Arai, and T. Seiyama, Sens. Actuators 7 (1985) 11.
    [66] O.K. Varghese and C.A. Grimes, J. Nanosci. Nanotechnol. 3 (2003) 277.
    [67] B.M. Kulwicki, J. Am. Ceram. Soc. 74 (1991) 697.
    [68] P.K. Kannan, R. Saraswathi, and J.B.B. Rayappan, Sens. Actuators A 164 (2010) 8.
    [69] D.E. Yates, S. Levine, and T.W. Healy, J. Chem. Soc. Fraday Trans. 1 (1974) 1807.
    [70] C.D. Fung, P.W. Cheung, and W.H. Ko, IEEE Trans. Electron Dev. 33 (1986) 8.
    [71] Y.W. Heo, D.P. Nortona, L.C. Tiena, Y. Kwona, B.S. Kangb, F. Renb, S.J. Peartona, and J.R. LaRoche, Mater. Sci. Eng. 47 (1) (2004) 1.
    [72] Y.B. Li, F.D. Valle, M. Simonnet, I. Yamada, and J.J. Delaunay, Nanotechnology 20 (2009) 045501.
    [73] S. Mridha, and D. Basak, Nanotechnology 20 (2009) 075203.
    [74] J.M. Lin, C.L. Cheng, H.Y. Lin, and Y.F. Chen, Opt. Lett. 31 (2006) 3173.
    [75] J.D. Choi, and G.M. Choi, Sens. Actuators B 69 (2000) 120.
    [76] R. Deng, B. Yao, Y.F. Li, Y.M. Zhao, B.H. Li, C.X. Shan, Z.Z. Zhang, D.X. Zhao, J.Y. Zhang, D.Z. Shen, and X.W. Fan, Appl. Phys. Lett. 94 (2009) 022108.
    [77] W. Guo, L. Fu, Y. Zhang, K. Zhang, L.Y. Liang, Z.M. Liu, H.T. Cao, and X.Q. Pan, Appl. Phys. Lett. 96 (2010) 042113.
    [78] Y.Y. Lin, C.W. Chen, W.C. Yen, W.F. Su, C.H. Ku, and J.J. Wu, Appl. Phys. Lett. 92 (2008) 233301.
    [79] L. Spanhel, M. A. Anderson, J. Am. Chem. Soc. 113 (1991) 2826.
    [80] Y.S. Yu, G.Y. Kim, B.H. Min, S.C. Kim, J. Eur. Ceram Soc. 24 (2004) 1865.
    [81] K. Vanheusden, C. Seager, W. Warren, D. Tallant, J. Voigt, Appl.Phys. Lett. 68 (1996) 403.
    [82] D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen, and T. Goto, Appl. Phys. Lett. 70 (1997) 2230.
    [83] E. Fortunato, R. Barros, P. Barquinha, V. Figueiredo, S.K. Park, C.S. Hwang, and R. Martins, Appl. Phys. Lett. 97 (2010) 052105.
    [84] A.N. Banerjee, and K.K. Chattopadhyay, Cent. Eur. J. Phys. 6 (2008) 57.
    [85] Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, Appl. Phys. Lett. 93 (2008) 032113.
    [86] S.Y. Li and P. Lin, C.Y. Lee and T.Y. Tseng, J. Appl. Phys. 95 (2004) 3711.
    [87] Y. Xu and M.A.A. Schoonen, Am. Mineral. 85 (2000) 543.
    [88] Z.Q. Xu, H. Deng, J. Xie, Y. Li, X. T. Zu, Appl. Surf. Sci. 253 (2006) 476.
    [89] L. Luo, Y.F. Zhang, S.S. Mao, and L.W. Lin, Sens. Actuators A 127 (2006) 201.
    [90] E. Monroy, F. Omn`es, F. Calle, Sci. Tech. 18 (2003) R33.
    [91] Y.W. Heo, D.P. Nortona, L.C. Tiena, Y. Kwona, B.S. Kangb, F. Renb, S.J. Peartona, and J.R. LaRoche, Mater. Sci. Eng. 47 (1) (2004) 1.
    [92] M.S. Gudiksen, L.J. Lauhon, J. Wang, D.C. Smith, C.M. Lieber, Nature 415 (2002) 617.
    [93] A. Star, Y. Lu, K. Bradley, G. Gruner, Nano. Lett. 4 (2004) 1587.
    [94] Y.B. Li, F.D. Valle, M. Simonnet, I. Yamada, and J.J. Delaunay, Nanotechnology 20 (2009) 045501.
    [95] Z. Guo, D.G. Zhao, Y.C. Liu, D.H. Shen, J.Y. Zhang, and B.H. Li, Appl. Phys. Lett. 93 (2008) 163501.
    [96] S.N. Das, K.J. Moon, J.P. Kar, J.H. Choi, J.J. Xiong, T.I. Lee, and J.M. Myoung, Appl. Phys. Lett. 97 (2010) 022103.
    [97] L.Y. Wen, Z.Z. Shao, Y.G. Fang, K.M. Wong, Y. Lei, L.F. Bian, and G. Wilde, Appl. Phys. Lett. 97 (2010) 053106.
    [98] Z.Y. Fan, D. Dutta, C.J. Chien, H.Y. Chen, and E.C. Brown, Appl. Phys. Lett. 89 (2006) 213110.
    [99] L.C. Campos, S.H. Dala, D.L. Baptista, R.M. Paniago, A.S. Ferlauto, W.I. Milne, L.O. Ladeira, and R.G. Lacerda, Appl. Phys. Lett. 90 (2007) 181929.
    [100] S.Z. Li, C.L. Gan, H. Cai, C.L. Yuan, J. Guo, P.S. Lee, and J. Ma, Appl. Phys. Lett. 90 (2005) 263106.
    [101] Y.Y. Lin, C.W. Chen, W.C. Yen, W.F. Su, C.H. Ku, and J.J. Wu, Appl. Phys. Lett. 92, (2008) 233301
    [102] K.S. Leschkies, A.G. Jacobs, D.J. Norris, and E.S. Aydil, Appl. Phys. Lett. 95 (2009) 193103.
    [103] Z.Q. Liu, D.H. Zhang, S. Han, C. Li, T. Tang, W. Jin, X.L. Liu, B. Lei, and C.W. Zhou, Adv. Mater. 15 (2003) 1754.
    [104] M. Adachi, Y. Murata, J. Takao, J.T. Jiu, M. Sakamoto, and F.M. Wang, J. Am. Chem. Soc. 126 (2004) 14943.
    [105] R.M. Ko, S.J. Wang, Z.F. Wen, J.K. Lin, G.H. Fan, W.I. Shu, and B.W. Liou, Jpn. J. Appl. Phys. 47 (2008) 3272.
    [106] Q. Wan, P. Feng, and T.H. Wang, Appl. Phys. Lett. 89 (2006) 123102.
    [107] F.S. Tsai, S.J. Wang, Y.C. Tu, Y.W. Hsu, C.Y. Kuo, Z.S. Lin, and R.M. Ko, Appl. Phys. Express 4 (2011) 025002.
    [108] J.B. Baxter and E.S. Aydil, Appl. Phys. Lett. 86 (2005) 053114.
    [109] X.J. Feng, K. Shankar, O.K. Varghese, M. Paulose, T.J. Latempa, and C.A. Crimes, Nano Lett. 8 (2008) 3781.
    [110] M. Law, L.E. Greene, J.C. Johnson, R. Saykally, and P.D. Yang, Nat. Mater. 4 (2005) 455.
    [111] Y.J. Choi, I.S. Hwang, J.G. Park, K.J. Choi, J.H. Park, and J.H. Lee, Nanotechnology 19 (2008) 095508.
    [112] Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, and C.L. Lin, Appl. Phys. Lett. 84 (2004) 3654.
    [113] L. Francioso, A.M. Taurino, A. Forleo, and P. Siciliano, Sens. Actuators B 130 (2008) 70.
    [114] J. Zhou, Y. Ding, S.Z. Deng, L. Gong, N.S. Xu, and Z.L. Wang, Adv. Mater. 17 (2005) 2107.
    [115] S.H. Jo, J.Y. Lao, Z.F. Ren, R.A. Farrer, T. Baldacchini, and J.T. Fourkas, Appl. Phys. Lett. 83 (2003) 4821.
    [116] W.C. Tsai, S.J. Wang, C.L. Chang, C.H. Chen, R.M. Ko, and B.W. Liu, EPL 84 (2008) 16001.
    [117] C. Soci, A. Zhang, B. Xiang, S.A. Dayeh, D.P.R. Aplin, J. Park, X.Y. Bao, Y.H. Lo, and D. Wang, Nano Lett. 7 (2007) 1003.
    [118] Z.Y. Fan, D.W. Wang, P.C. Chang, W.Y. Tseng, and J.G. Lu, Appl. Phys. Lett. 85 (2004) 5923.
    [119] Y.W. Heo, L.C. Tien, Y. Kwon, D.P. Norton, S.J. Pearton, B.S. Kang, and F. Ren, Appl. Phys. Lett. 85 (2004) 2274.
    [120] D. Kim, Y.K. Kim, S.C. Park, J.S. Ha, and J.H. Huh, Appl. Phys. Lett. 95 (2009) 043107.
    [121] E.N. Dattoli, Q. Wan, W. Guo, Y.B. Chen, W.Q. Pan, and W. Lu, Nano Lett. 7 (2007) 2463.
    [122] J.M. Bao, M.A. Zimmler, F. Capasso, X.W. Wang and Z.F. Ren, Nano Lett. 6 (2006) 1719.
    [123] R. Konenkamp, R.C. Word, and C. Schlegel, Appl. Phys. Lett. 85 (2004) 6004.
    [124] M.C. Jeong, B.Y. Oh, M.H. Ham, and J.M. Myoung, Appl. Phys. Lett. 88 (2006) 202105.
    [125] Y.S. Zhang, K. Yu, D.S. Jiang, Z.Q. Zhu, H.R. Geng, and L.Q. Luo, Appl. Surf. Sci. 242 (2005) 212.
    [126] Y.B. Li, F.D. Valle, M. Simonnet, I. Yamada, and J.J. Delaunay, Nanotechnology 20 (2009) 045501.
    [127] J.Q. Xu, Q.Y. Pan, Y. Shun, and Z.H. Tian, Sens. Actuators B 66 (2000) 277.
    [128] C.J. Lee, T.J. Lee, S.C. Lyu, Y. Zhang, H. Ruh, and H.J. Lee, Appl. Phys. Lett. 81 (2002) 3648.
    [129] Y.W. Heo, D.P. Norton, L.C. Tien, Y. Kwon, B.S. Kang, F. Ren, S.J. Pearton, and J.R. LaRoche, Mater. Sci. Eng. 47 (2004) 1.
    [130] S.P. Chang, S.J. Chang, C.Y. Lu, M.J. Li, C.L. Hsu, Y.Z. Chiou, T.J. Hsueh, and I.C. Chen, Superlattices Microst. 47 (2010) 772.
    [131] H.T. Hsueh, T.J. Hsueh, S.J. Chang, F.Y. Hung, T.Y. Hung, T.Y. Tsai, W.Y. Weng, C.L. Hsu, and B.T. Dai, Sens. Actuators B 156 (2011) 906.
    [132] L. Greenspan, J. Res. Natl. Bur. Stand. 81 (1977) 89.
    [133] L. Spanhel and M.A. Anderson, J. Am. Chem. Soc. 113 (1991) 2826.
    [134] W.P. Tai and J.H. Oh, J. Mater. Sci.: Mater. Electron. 13 (2002) 391.
    [135] P.K. Kannan, R. Saraswathi, and J.B. B. Rayappan, Sens. Actuators A 164 (2010) 8.
    [136] Y. Shimizu, H. Arai, and T. Seiyama, Sens. Actuators 7 (1985) 11.
    [137] O.K. Varghese and C.A. Grimes, J. Nanosci. Nanotechnol. 3 (2003) 277.
    [138] B.M. Kulwicki, J. Am. Ceram. Soc. 74 (1991) 697.
    [139] Y. Shimizu, H. Okada, and H. Arai, J. Am. Ceram. Soc. 72 (1989) 436.
    [140] Q. Kuang, C.S. Lao, Z.L. Wang, Z.X. Xie, and L.S. Zheng, J. Am. Chem. Soc. 129 (2007) 6070.
    [141] L.L.W. Chow, M.M.F. Yuen, P.C.H. Chan, and A.T. Cheung, Sens. Actuators B 76 (2001) 310.
    [142] N. Parvatikar, S. Jain, S. Khasim, M. Revansiddappa, S.V. Bhoraskar, and M.V.N.A. Prasad, Sens. Actuators B 114 (2006) 599.
    [143] Y.S. Zhang, K. Yu, D.S. Jiang, Z.Q. Zhu, H.R. Geng, and L.Q. Luo, Appl. Surf. Sci. 242 (2005) 212.
    [144] R.K. Nahar, Sens. Actuators B 63 (2000) 49.
    [145] R.P. Tandon, M.R. Tripathy, A.K. Arora, and S. Hotchandani, Sens. Actuators B 114 (2006) 768.
    [146] W.P. Tai and J.H. Oh, J. Mater. Sci. Mater. El. 13 (2002) 391.
    [147] Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, X.G. Gao, and J.P. Li, Appl. Phys. Lett. 84 (2004) 3085.
    [148] S.P. Chang, S.J. Chang, C.Y. Lu, M.J. Li, C.L. Hsu, Y.Z. Chiou, T.J. Hsueh, and I.C. Chen, Superlattices Microst. 47 (2010) 772.
    [149] N. Zhang, K. Yu, Z.Q. Zhu, and D.S. Jiang, Sens. Actuators A 143 (2008) 245.
    [150] X.L. Hu, J.M. Gong, L.Z. Zhang, and J.C. Yu, Adv. Mater. 20 (2008) 4845.
    [151] Y.F. Qiu and S.H. Yang, Adv. Funct. Mater. 17 (2007) 1345.
    [152] A. Erol, S. Okur, B. Comba, O. Mermer, and M.C. Arikan, Sens. Actuators B 145 (2010) 174.
    [153] W. Wang, Z.Y. Li, L. Liu, H.N. Zhang, Y. Wang, H.M. Huang, Z.J. Wang, and C. Wang, Sens. Actuators B 141 (2009) 404.
    [154] L. Zhang, J.H. Zhao, H.Q. Lu, L. Li, J.F. Zheng, H. Li, and Z.P. Zhu, Sens. Actuators B 161 (2012) 209.
    [155] C.S. Moon, H.R. Kim, G. Auchterlonie, J. Drennan, J.H. Lee, Sens. Actuators B 131 (2008) 556.
    [156] F.S. Tsai, S.J. Wang, Y.C. Tu, and T.H. Lin, Jpn. J. Appl. Phys. 52 (2013) 06GG07.
    [157] L. Greenspan, J. Res. Nat. Bur. Standards 81A (1977) 89.
    [158] K. Kakiuchi, E. Hosono, T. Kimura, H. Imai, and S. Fujihara, J. Sol-Gel Sci. Techn. 39 (2006) 63.
    [159] J. Li, H.Q. Fan, and X.H. Jia, J. Phys. Chem. C 114 (2010) 14684.
    [160] D. Costenaro, F. Carniato, G. Gatti, C. Bisio, and L. Marchese, J. Phys. Chem. C 115 (2011) 25257.
    [161] X.F. Zhou, Z.L. Hu, Y.Q. Fan, S. Chen, W.P. Ding, and N.P. Xu, J. Phys. Chem. C 112 (2008) 11722.
    [162] C.Y. Lin, Y.H. Lai, H.W. Chen, J.G. Chen, C.W. Kung, R. Vittal, and K.C. Ho, Energy Environ. Sci. 4 (2011) 3448.
    [163] J. Liang, Y.C. Hu, Y.Q. Wu, and H. Chen, J. Nanomater. 2013 (2013) 13978-1.
    [164] Y. Sun, N.G.N. Angwafor, D.J. Riley, M.N.R. Ashfold, Chem. Phys. Lett. 431 (2006) 352.
    [165] S.H. Ko, D. Lee, H.W. Kang, K. Hyun Nam, J.Y. Yeo, S.J. Hong, C.P. Grigoropoulos, and H.J. Sung, Nano Lett. 11 (2011) 666.
    [166] S. Baruah and J. Dutta, Sci. Technol. Adv. Mater. 10 (2009) 013001.
    [167] F.S. Tsai, S.J. Wang, Y.C. Tu, Y.W. Hsu, C.Y. Kuo, Z.S. Lin, and R.M. Ko, Appl. Phys. Express 4 (2011) 025002.
    [168] N.K. Pandey, K. Tiwari, and A. Roy, IEEE Sens. J. 11 (9) (2011) 2142.
    [169] N.K. Pandey, K. Tiwari, A. Roy, and A. Mishra, Int. J. Appl. Ceram. Technol., 10 (1) (2012) 150.
    [170] W. Qu and J.U. Meyer, Sens. Actuators B 40 (1997) 175.
    [171] D. Saha, R. Giri, K.K. Mistry, and K. Sengupta, Sens. Actuators B Chem. 107 (2005) 323.
    [172] P.K. Kannan, R. Saraswathi, and J.B.B. Rayappan, Sens. Actuators A 164 (2010) 8.
    [173] Y. Shimizu, H. Arai, and T. Seiyama, Sens. Actuators 7 (1985) 11.
    [174] O.K. Varghese and C.A. Grimes, J. Nanosci. Nanotechnol. 3 (2003) 277.
    [175] B.M. Kulwicki, J. Am. Ceram. Soc. 74 (1991) 697.
    [176] J.Y. Liu, Z. Guo, F.L. Meng, T. Luo, M.Q. Li, and J.H. Liu, Nanotechnology 20 (2009) 125501.
    [177] J. Zhang, S.R. Wang, M.J. Xu, Y. Wang, B.L. Zhu, S.M. Zhang, W.P. Huang, and S.H. Wu, Cryst. Growth Des. 9 (2009) 3532.
    [178] C. Ruan, K. Zeng, and C. A. Grimes, Anal. Chim. Acta 497 (2003) 123.
    [179] S. Yao, M. Wang, and M. Madou, J. Electrochem. Soc. 148 (2001) 29.
    [180] A. Talaie, J.Y. Lee, Y.K. Lee, J. Jang, J.A. Romagnoli, T. Taguchi, and E. Maeder, Thin Solid Films 363 (2000) 163.
    [181] W.S. Han, M.Y. Park, D.H. Cho, T.K. Hong, D.H. Lee, and J.M. Park, Anal Sci. 17 (2001) 727.
    [182] M.J. Schoning, A. Simonis, C. Ruge, H. Ecken, M. Muller-Veggian, and H. Luth, Sensors 2 (2002) 11.
    [183] P. A. Comte and J. Janata, Anal. Chim. Acta 101 (1978) 247.
    [184] J.M. Hollander and W.L. Jolly, X-ray Photoelectron Spectroscopy, Acc. Chem. Res. 3 (1970) 193.
    [185] D.E. Yates, S. Levine, and T.W. Healy, J. Chem. Soc. Fraday Trans. 1 (1974) 1807.
    [186] C.D. Fung, P.W. Cheung, and W.H. Ko, IEEE Trans. Elect. Dev. 33 (1986) 8.
    [187] B.D. Yatess, S. Levine, and T.W. Healy, J. Chem. Soc., Faraday Trans. 70 (1974) 1807.
    [188] J.C. Chen, J.C. Chou, T.P. Sun, and S.K. Hsiung, Sens. Actuator B 91(2003) 180.
    [189] J.C. Chou, J.L. Chiang and C.L. WU, Jpn. J. Appl. Phys. 44 (2005) 4838.
    [190] J.V. Spiegel, I Lauks, P. Chan, and D. Babe, Sens. Actuator B 4 (1983) 291.
    [191] L.T. Yin, J.C. Chou, W.Y. Chung, T.P. Sun, and S.K. Hsiung, Mater. Chem. Phys. 70 (2001) 12.
    [192] X.Y. Wang, Y. Liu, X. Zhou, B.J. Li, H. Wang, W.X. Zhao, H. Huang, C.L. Liang, X. Yu, Z. Liu, and H. Shen, J. Mater. Chem. 22 (2012) 17531.
    [193] X.Q. Meng, X.Z. Wang, M.Z. Zhong, F.M. Wu, and Y.Z. Fang, J. Solid State Chem. 201 (2013) 75.
    [194] J. Cao, J.Z. Sun, H.Y. Li, J. Hong and M. Wang, J. M a t e r. C h e m. 14 (2004) 1203.

    下載圖示 校內:2017-01-08公開
    校外:2017-01-08公開
    QR CODE