| 研究生: |
王信云 Wang, Hsing-Yun |
|---|---|
| 論文名稱: |
創新CO2雷射加工技術於微結構的製作與應用 Fabrication and application of microstructure using novel CO2 laser micromachining |
| 指導教授: |
鍾震桂
Chung, Chen-Kuei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 金屬光罩 、二氧化碳 (CO2)雷射 、微結構 、導光板 |
| 外文關鍵詞: | metal foil, CO2 laser, microstructure, light guide plate |
| 相關次數: | 點閱:82 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統二氧化碳 (CO2)雷射在空氣下加工會產生缺陷如凸塊、噴濺、再凝固及熱影響區等現象,因此本研究利用金屬光罩輔助CO2雷射加工微結構,改善了因熱能累積而產生的缺陷,有效降低凸塊高度及熱影響區問題,並且避免了噴濺及燒焦的情況發生。傳統雷射加工尺度大約在200 μm左右,而利用金屬光罩之開孔尺寸限制,可使加工尺度降低到58.2 μm左右,此尺度比雷射光斑尺寸還小,突破了傳統雷射加工的限制。所有缺陷產生的情況,皆與熱能的累積有關,因此本研究模擬了雷射加工之溫度場,發現金屬光罩輔助雷射加工其基材的最高溫度大大的降低,因此證明金屬光罩可以有效的隔離並且傳遞掉在加工過程中產生的多餘熱量。可以運用於導光板、微針陣列、材料改質和生物微流體晶片的製作,並可以有效的取代此尺寸的半導體製程。
利用CO2雷射加工有成本較低、加工彈性較高、和製程迅速之優點,並利用金屬光罩解決了傳統雷射加工十字型微流道時產生的阻塞問題,因此未來可利用於血液檢測和微流體晶片的製作。本論文成功的利用此金屬光罩輔助CO2雷射加工微透鏡陣列應用於導光板製作,改變雷射功率與掃瞄速度加工出不同形貌之微結構,並且對不同陣列的導光板進行光學性質分析。利用此製程製備出之導光板搭配使用一片擴散膜與兩片菱鏡片,其均齊度可達近80 %,已達市售產品均齊度要求75 %。
Traditional CO2 laser micromachining in air-cooling environment has some defects, such as bulges, splashes, resolidification and heat-affected zone. In this thesis we use the Foil-Assisted CO2 LAser Micromachining (FACLAM) to fabricate the microstructures on the materials. From the results, FACLAM not only improved the defects produced by heat accumulation, but also reduced the size of the bulges and heat affected zone. In addition, it diminished the splashes and scorch during the process. Compared with traditional CO2 laser micromachining in air-cooling environment, FACLAM was breaking through the restriction of laser machining that reduced the processing scale to as small as 58.2 μm, which is much smaller than the laser spot size. All of the defects result from the heat accumulations, so we simulated the temperature distribution of the laser micromachining. The results showed the heating temperature can be greatly reduced by using FACLAM. It evidences that the enhancement of high quality of the ablated surface by FACLAM is achieved because the metal foil mask can significantly block and conduct the remaining heat out to reduce the surface temperature during ablations. It can be applied for light quide plate, microneedle arrays, laser modification of materials and bio-microfuidic chip. Using FACLAM can effectively replace semiconductor process above 50 μm-scaled.
The CO2 laser processing has been widely applied in microfabrication and microfluidic chips because of the advantages of low cost, flexibility, easy-fabrication, and environmental-friendly. Using FACLAM to fabricate the cross-junction microchannels, we can fabricate the channels without the occurrence of cloggings. Changing the arrangement of metal foil, it can also let us use the FACLAM to fabricate the Light guide plate (LGP). The different laser power and scanning speeds with different microstructure shapes are discussed. Furthermore, the optical properties of various microstructure shapes and microstructure arrangements are analyzed. From the result, the uniformity of light guide palte with a diffusion plate and two prism plates was about 80% which is higher than the average uniformity of commercial products with 75%.
1. H. Xu, Z. Zheng, L. Zhang, H. Zhang and F. Deng, “Hierarchical chlorine-doped rutile TiO2 spherical clusters of nanorods: Large-scale synthesis and high photocatalytic activity”, Journal of Solid State Chemistry 181, pp. 2516-2522, 2008.
2. X. F. Cheng, W. H. Leng, D. P. Liu, Y. M. Xu, J. Q. Zhang and C. N. Cao, “Electrochemical preparation and characterization of surface-fluorinated TiO2 nanoporous film and its enhanced photoelecctrochemical and photocatalytic properties”, Journal of Physical Chemistry C 112, pp. 8725-8734, 2008.
3. S. Lee, S. Park and D. Cho, “The Surface/Bulk Micromachining (SBM) process: A New Method for Fabricating Released MEMS in Single Crystal Silicon”, Journal of Microelectromechanical Systems 8, pp. 409-416, 1999.
4. S. Lee and C. H. Han, “A Novel Refractive Silicon Microlens Array Using Bulk Micromachining Technology”, Sensors and Actuators A 88, pp. 87-90, 2001.
5. M. A. Benitez, J. A. Plaza, S. Q. Sheng and J. Esteve, “A new process for releasing micromechanical structures in surface micromachining”, Journal of Micromechanics and Microengineering 6, pp. 36-38, 1996.
6. L. Y. Lin, J. L. Shen, S. S. Lee, and M. C. Wu, “Realization of novel monolithic free-space optical disk pickup heads by surface micromachining”, Optics Letters 21, pp. 155-157, 1996.
7. J. Buhler, F. P. Steiner and H. Baltes, “Silicon dioxide sacrificial layer etching in surface micromachining”, Journal of Micromechanics and Microengineering 7, R1-R13, 1997.
8. L. T. Romankiw, “A path: from electroplating through lithographic masks in electronics to LIGA in MEMS”, Electrochimica Acta 42, pp. 2985-3005, 1997.
9. M. C. Chou, H. Yang and S. H. Yeh, “Microcomposite electroforming for LIGA technology”, Microsystem Technologies 7, pp. 36-39, 2001.
10. A. Bertsch, H. Lorenz and P. Renaud, “3D microfabrication by combining microstereolithography and thick resist UV lithography”, Sensors and Actuators 73, pp. 14-23, 1999.
11. H. K. Chang and Y. K. Kim, “UV-LIGA process for high aspect ratio structure using stress barrier and C-shaped etch hole”, Sensors and Actuators 84, pp. 342-350, 2000.
12. J. L. Lin and C. L. Lin, “The use of the orthogonal array with grey relational analysis to optimize the electrical discharge machining process with multiple performance characteristics”, International Journal of Machine Tools and Manufacture 42, pp. 237-244, 2002.
13. Y. S. Liao, J. T. Huang and H. C. Su, “A study on the machining- parameters optimization of wire electrical discharge machining”, Journal of Materials Processing Technology 71, pp. 487-493, 1997.
14. S. M. Nikiforov , S. S. Alimpiev , M. W. George , B. G. Sartakov and Y.O. Simanovsky, “Anomalous reflection of water surface during laser ablation”, Optics Communications 182, pp. 17-24, 2000.
15. A. T. Woolley and R. A. Mathies, “Ultra-high-speed DNA fragment separations using microfabricated capillary array electrophoresis chips”, Proceedings of the National Academy of Sciences of the United States of America 91, pp. 11348-11352, 1994.
16. V. Dolnik, S. Liu and S. Jovanovich, “Capillary electrophoresis on microchip”, Electrophoresis 21, pp. 41-54, 2000.
17. R. M. McCormick, R. J. Nelson, M. G. Alonso-Amigo, D. J. Benvegnu and H. H. Hooper, “Microchannel Electrophoretic Separations of DNA in Injection-Molded Plastic Substrates”, Analytical Chemistry 69, pp. 2626-2630, 1997.
18. B. Y. Pemg, C. W. Wu, Y. K. Shen and Y. Lin, “Microfluidic chip fabrication using hot embossing and thermal bonding of COP”, Polymers forAdvanced Technologies 21, pp. 457-466, 2010.
19. B. Mosadegh, M. Agarwal, Y. Torisawa and S. Takayama, “Simultaneous fabrication of PDMS through-holes for three-dimensional microfluidic application”, Lab on Chip 10, pp. 1983-1986, 2010.
20. C. K. Chung and T. R. Shih, “A rhombic micromixer with asymmetrical flow for enhancing mixing”, Journal of Micromechanics and Microengineering 17, pp. 2495-2504, 2007.
21. H. Y. Zheng, Y. C. Lam, C. Sundarraman and D. V. Tran, “Influence of substrate cooling on femtosecond laser machined hole depth and diameter”, Applied Physics A 89, pp. 559-563, 2007.
22. D. Day and M. Gu, “Microchannel fabrication in PMMA based on localized heating by nanojoule high repetition rate femtosecond pulses”, Optics Express 13, pp. 5939-5946, 2005.
23. H. Qi, X. Wang, T. Chen, X. Ma and T. Zuo, “Fabrication and characterization of polymethyl methacrylate continuous-flow PCR microfluidic chip using CO2 laser ablation”, Microsystem Technologies 15, pp. 1027-1030, 2009.
24. T. F. Hong, W. J. Ju, M. C. Wu, C. H. Tai, C. H. Tsai and L. M. Fu , “Rapid prototyping of PMMA microfluidic chips utilizing a CO2 laser”, Microfluidics and Nanofluidics 9, pp. 1125-1133, 2010.
25. L. Romoli, G. Tantussi and G. Dini, “Experimental approach to the laser machining of PMMA substrates for the fabrication of microfluidic devices”, Optics and Lasers in Engineering 49, pp. 419-427, 2011.
26. D. Snakenborg, H. Klank and J. P. Kutter, “Microstructure fabrication with CO2 laser system”, Journal of Micromechanics and Microengineering 14, pp. 182-189, 2004.
27. C. K. Chung, Y. C. Lin and G. R. Huang, “Bulge formation and improvement of the polymer in CO2 laser micromachining”, Journal of Micromechanics and Microengineering 15, pp. 1878-1884, 2005.
28. C. H. Tien, C. H. Hung and T. H. Yu, “Microlens arrays by direct-writing inkjet print for LCD backlighting applications”, Journal of Display Technology 5, pp. 147-151, 2009.
29. C. H. Chien and Z. P. Chen, “Fabrication of light guide plate on PDMS-based using MEMS technique for application of LED-backlight”, Key Engineering Materials 364-366, pp. 7-12, 2008.
30. C. H. Chien and Z. P. Chen, “The study of integrated LED-backlight plate fabricated by micromachining technique”, Microsystem Technologies 15, pp. 383-389, 2009.
31. C. H. Wu and C. H. Lu, “Fabrication of an LCD light guide plate using closed-die hot embossing”, Journal of Micromechanics and Microengineering 18, 035006, 2008.
32. H. J. Kang, H. J. Kim, J. S. Kim, W. Y. Choi, W. S. Chu and S. H. Ahn, “Laser marking system for light guide panel using design of experiment and web-based prototyping”, Robotics and Computer-Integrated Manufacturing 26, pp. 535-540, 2010.
33. T. Kim, S. Park, H. Oh and Y. Shin, “Analysis of the laser patterning inside light guide panel”, Optics and Laser Technology 39, pp. 1437-1442, 2007.
34. P. Downen, “A closer look at Flat-Panel-Display measurement standards and trends”, Information Display, pp. 16-21, 2006.
35. 兆崧企業股份有限公司 http://www.amster.com.tw/
36. R. F. Z. Lizarelli, M. M. Costa, E. Carvalho-Filho, F. D. Nunes amd V. S. Bagnato, “Selective ablation of dental enamel and dentin using femtosecond laser pulses”, Laser Physics Letters 5, pp. 63-69, 2008.
校內:2021-12-31公開