簡易檢索 / 詳目顯示

研究生: 吳文揚
Wu, Wen-Yang
論文名稱: 基於室內環境感測資訊之移動機器人控制系統
Integration and Implementation of Mobile Robot System and Wireless Sensors in Indoor Environment
指導教授: 劉彥辰
Liu, Yen-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 111
中文關鍵詞: 室內環境調節環境狀況估測機器人移動控制多機器人系統
外文關鍵詞: Autonomous guided robot, indoor environmental quality (IEQ), mobile robots, wireless sensors
相關次數: 點閱:62下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著人們對室內環境的重視,相關環境調節裝置的使用也愈來愈普及,然而其於運作上仍然有諸多限制,如只能在定點進行調節任務、或無法提供足夠的資訊予使用者等,皆會讓使用者無法有效率地使用這些裝置。為了讓環境調節裝置擁有更好的調節效率,本論文整合設置於室內空間之環境感測模組與裝設有環境調節裝置之移動機器平台,提出一個多移動機器人之室內環境調節系統,使調節裝置可以依據環境感測模組所感測之環境資訊判斷室內區域的環境狀況,並移動至需要進行環境調節之區域進行調節環境任務。
    依據環境感測模組所感測之環境資訊,此系統將會估測各室內區域的環境狀況,並計算適當的調節位置給予環境調節裝置。本論文是以實驗來驗證環境調節裝置之調節位置對於環境調節效率的影響,並從實驗結果中歸納出環境調節裝置於不同實驗環境狀況下之最佳位置控制策略。於移動機器人方面,本研究是使用Simultaneous Localization and Mapping (SLAM)法建置室內平面地圖、Adaptive Monte Carlo Localization (AMCL)法定位機器人之位置、Probabilistic Road Map (PRM)法規劃移動路徑、以及Light Detection and Ranging(LIDAR) 感測器進行機器人避障控制。藉由前述方法與感測器,本論文制定了移動機器人之移動控制方法,使其在接收到調節環境之任務後,可以導航至任務的目標位置,並於移動途中避免障礙物與多機器人間的碰撞。
    本論文所提出之多移動機器人室內環境調節系統除了於Gazebo的3D模擬環境進行模擬以外,亦有架設實驗場地以進行此系統的運作測試,記錄單移動機器人與多移動機器人的移動軌跡及調節成果。

    As the living standard raises, humans start to pay attention to the quality of their life, especially for indoor environmental quality (IEQ). In order to improve
    the indoor environment, it is a good choice to use the apparatus like humidifier, air purifier, or air conditioner. However, most of these apparatus can only improve one specific space, can only measure the environmental condition nearby them, and unable to know the effect of their position to the efficiency of environmental regulation . This thesis proposes a mobile robot system integrated with wireless sensors mounted in indoor environment. The system consists of two parts, the sensors separated in the indoor space and the autonomous robots that have the function to improve the environment. Through the sensors, the system evaluates the environmental condition of different space, decides which space needs to be improved first, and finds the best position for the robots to execute regulating environmental condition. For the robots, the system builds indoor maps by Simultaneous Localization and Mapping (SLAM), locates robots by Adaptive MonteCarlo Localization (AMCL), and plans routes by Probabilistic Road Map (PRM). Within navigation, from the control methods proposed in this thesis, system can navigate robots to the target position with obstacle avoidance and collision avoidance. Finally, several experiments are conducted to show the feasibility of the system.

    圖目錄 xvii 表目錄 xxi 第一章 緒論 1 1.1 研究背景 1 1.2 相關研究 3 1.3 研究動機與問題定義 6 1.4 研究目標與貢獻 7 1.5 本文架構 10 第二章 系統架構說明 12 2.1 系統流程 12 2.2 無線通訊 14 2.3 機器(調節裝置)模型與感測器 18 2.4 地圖建置 21 第三章 環境狀況之評估及調節策略 26 3.1 調節位置對於環境調節效率的影響 26 3.2 調節位置之控制 29 第四章 移動機器之移動控制 34 4.1 定位 34 4.2 路線規劃 37 4.3 導航及避障 42 第五章 多機器人之移動控制 49 5.1 多機器人之控制策略 49 5.2 多機器人之碰撞預防實驗 57 第六章 實驗架設與結果 63 6.1 實驗場地設置 63 6.2 單機器人之移動實驗 64 6.3 單機器人於不同環境狀況之位置調整實驗 67 6.4 多機器人之移動實驗及調節結果 76 第七章 結論與未來展望 81 7.1 結論 81 7.2 未來展望 82 參考文獻 84 附錄 87 A.1 移動機器人控制策略程式 87 A-2 環境狀況評估程式 108

    [1] Statista. Total unit shipments of air-conditioning in the u.s. from 2012 to 2017 (in 1,000s)*, by type. https://www.statista.com/statistics/296924/unit-shipments-of-air-conditioning/.
    [2] Statista. Sales volume of air purifiers in china from 2011 to 2017 (in million units). https://www.statista.com/statistics/754030/china-air-purifier-sales-volume/.
    [3] 智研諮詢集團. 2017-2022年中國掃地機器人市場現狀調研分析及發展前景預測報告. http://www.chyxx.com/research/201611/472666.html.
    [4] ROBOTIS. Specifications of turtlebot3. http://emanual.robotis.com/docs/en/platform/turtlebot3/specifications/#specifications.
    [5] Peder Wolkoff. Indoor air pollutants in office environments: assessment of comfort, health, and performance. International Journal of Hygiene and Environmental Health, 216(4):371–394, 2013.
    [6] Lina Mu, Li Liu, Rungui Niu, Baoxing Zhao, Jianping Shi, Yanli Li, Mya Swanson, William Scheider, Jia Su, Shen-Chih Chang, et al. Indoor air pollution and risk of lung cancer among chinese female non-smokers. Cancer Causes & Control, 24(3):439–450, 2013.
    [7] Sayantani Bhattacharya, S Sridevi, and R Pitchiah. Indoor air quality monitoring using wireless sensor network. In Sensing Technology (ICST), 2012 Sixth International Conference on, pages 422–427. IEEE, 2012.
    [8] Jung-Yoon Kim, Chao-Hsien Chu, and Sang-Moon Shin. Issaq: An integrated sensing systems for real-time indoor air quality monitoring. IEEE Sensors Journal, 14(12):4230–4244, 2014.
    [9] Daluwathu MG Preethichandra. Design of a smart indoor air quality monitoring wireless sensor network for assisted living. In Instrumentation and Measurement Technology Conference (I2MTC), 2013 IEEE International, pages 1306–1310. IEEE, 2013.
    [10] CHAN Ping-Chieh, Cheng-Yi Huang, Kuo-Shu Tseng, Hua-yi Hsieh, and Yuan-Ping Hsieh. Intelligent air-conditioning controlling system and intelligent controlling method for the same, February 18, 2016. U.S. Patent App. 14/825,938.
    [11] David F Summerville, John P Williston, Martin A Wand, Thomas J Doty, and Haradon J Rice. Method for controlling the movements of a mobile robot in a multiple node factory, January 18, 1994. U.S. Patent 5,280,431.
    [12] R Neumann De Carvalho, HA Vidal, P Vieira, and MI Ribeiro. Complete coverage path planning and guidance for cleaning robots. In Industrial Electronics, 1997. SIE’97., Proceedings of the IEEE International Symposium on, volume 2, pages 677–682. IEEE, 1997.
    [13] Wolfgang Hess, Damon Kohler, Holger Rapp, and Daniel Andor. Real-time loop closure in 2d lidar slam. In Robotics and Automation (ICRA), 2016 IEEE International Conference on, pages 1271–1278. IEEE, 2016.
    [14] Erion Plaku. Region-guided and sampling-based tree search for motion planning with dynamics. IEEE Transactions on Robotics, 31(3):723–735, 2015.
    [15] Steven M LaValle. Rapidly-exploring random trees: A new tool for path planning. 1998.
    [16] Simon Schmitt, Heiko Will, Benjamin Aschenbrenner, Thomas Hillebrandt, and Marcel Kyas. A reference system for indoor localization testbeds. In Indoor Positioning and Indoor Navigation (IPIN), 2012 International Conference on, pages 1–8. IEEE, 2012.
    [17] Jin-Shyan Lee, Yu-Wei Su, and Chung-Chou Shen. A comparative study of wireless protocols: Bluetooth, uwb, zigbee, and wi-fi. In Industrial Electronics Society, 2007. IECON 2007. 33rd Annual Conference of the IEEE, pages 46–51. IEEE, 2007.
    [18] Kwang-Chul Noh and Myung-Do Oh. Variation of clean air delivery rate and effective air cleaning ratio of room air cleaning devices. Building and Environment, 84:44–49, 2015.
    19] Yapeng Wang, Xu Yang, Yutian Zhao, Yue Liu, and Laurie Cuthbert. Bluetooth positioning using rssi and triangulation methods. In Consumer Communications
    and Networking Conference (CCNC), 2013 IEEE, pages 837–842. IEEE, 2013.
    [20] Ioannis M Rekleitis. A particle filter tutorial for mobile robot localization. Centre for Intelligent Machines, McGill University, Tech. Rep. TR-CIM-04-
    02, 2004.
    [21] Dieter Fox. Kld-sampling: Adaptive particle filters. In Advances in Neural Information Processing Systems, pages 713–720, 2002.
    [22] Raghvendra V Cowlagi and Panagiotis Tsiotras. Hierarchical motion planning with dynamical feasibility guarantees for mobile robotic vehicles. IEEE
    Transactions on Robotics, 28(2):379–395, 2012.
    [23] Chengtao Cai, Chunsheng Yang, Qidan Zhu, and Yanhua Liang. Collision avoidance in multi-robot systems. In Mechatronics and Automation, 2007. ICMA 2007. International Conference on, pages 2795–2800. IEEE, 2007.
    [24] Daniel Hennes, Daniel Claes, Wim Meeussen, and Karl Tuyls. Multi-robot collision avoidance with localization uncertainty. In Proceedings of the 11th International Conference on Autonomous Agents and Multiagent SystemsVolume 1, pages 147–154. International Foundation for Autonomous Agents and Multiagent Systems, 2012.

    無法下載圖示 校內:2023-08-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE