簡易檢索 / 詳目顯示

研究生: 郭士豪
Kuo, Shis-Hao
論文名稱: 液體負載下平板波的特性分析與實驗量測
The Characteristics of Leaky Lamb Wave Subjected to Fluid Loadings : Analysis and Experiment
指導教授: 李永春
Lee, Yung-Chun
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 123
中文關鍵詞: 疊波理論差動式量測系統黏滯度導電度壓電平板洩漏板波
外文關鍵詞: conductivity, dielectric, Leaky Lamb Wave, Fluid-Loading, Dispersion Curve, Differential type measurement method, viscosity
相關次數: 點閱:98下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究液體負載下的平板波特性(亦稱洩漏板波),包含理論分析與實驗量測。在理論方面,利用『Partial Wave Theory』(疊波理論),重新分析洩漏板波問題,並配合二維平面搜尋的數值方法,編寫一套能同時計算洩漏板波波速以及振幅的衰減的電腦程式。利用此電腦程式,本論文分析了一些常見的洩漏板波實例,包括壓電平板受到介電及導電液體負載時,洩漏板波的特性變化。以及液體的黏滯度對洩漏板波在等向性平板上的波傳影響。接著,並利用鋰酸鈮晶片以及鈉玻璃片作為試件,分別計算出這些試件受到不同濃度的鹽水溶液以及甘油溶液負載時的洩漏板波特性,其中,波速變化和震幅衰減係數被詳細且定量的計算出來。
    實驗方面,本論文開發一套新的量測系統。有別於其他的量測系統,此系統是利用差動量測的原理,專門量測平板在無負載以及受到液體負載下時,板波波傳的差異。藉由這種嶄新的量測概念,可以排除許多實驗上的誤差以及干擾,使得這套新開發的量測系統,能夠達到十分精確的量測精度。利用此量測系統,我們測量出洩漏板波在鋰酸鈮晶片受到不同濃度的鹽水溶液負載時的波速變化和振幅衰減量。此外,鈉玻璃片受到不同濃度的甘油溶液負載時,洩漏板波的變化情形也被成功的量測出來。藉由比對這些實驗與理論分析的結果,我們發現洩漏板波的實際變化趨勢,與理論的預測結果大致吻合。因此,可以證明『Partial Wave Theory』(疊波理論) 對於平板波於液體覆載下的波傳特性,有不錯的預測結果。這些結論,相信對於未來的板波研究以及微感測器開發,有相當的幫助。

    This dissertation investigates the characteristics of the leaky Lamb wave propagation in a plate subjected to fluid loadings. Both the theoretical analysis and experimental results are presented. In theoretical investigates, the partial wave theory is applied to analyze the corresponding velocity shifting and attenuation of leaky Lamb waves induced by fluid loadings. With no incident wave involved in the theoretical model, both velocity change and wave attenuation are simultaneously derived. A computer program with the 2D plane search method is implemented for numerically solving the problem. Several cases of leaky Lamb waves are examined including both dielectric and conductive fluid loads on piezoelectric plates and viscous fluid loadings on isotropic plates. In these cases, both the wave velocity and attenuation of leaky Lamb waves are quantitatively determined and influences of each loading parameter are characterized systematically.
    Experimentally, a novel experiment system is designed and developed for measuring small variations in wave velocity and attenuation of leaky Lamb waves. It is a differential type measuring system focusing on the difference between Lamb waves with and without fluid loadings. Therefore, the leaky Lamb wave velocity shifting and the wave attenuation can be experimentally determined with high sensitivity and accuracy. The uniqueness and strength of this differential measurement system for leaky Lamb waves have been successfully tested and verified through a series of experiments.
    Finally, an XZ-LiNbO3 wafer and a soda lime glass plate are chosen as the sample plates for both theoretical and experimental investigations on fluid’s loading effects on leaky Lamb waves. The former is for electrical loading effects, which include both dielectric and conductive loadings, and the latter for mechanical loadings including mass and viscous loadings. Numerical calculations base on the partial wave theory and experimental measurements using the differential measurement system are carried out for a number of different fluids loaded on the sample plates. Experimentally measured results in general agree well with those predicted by theoretical analysis, which implies the validity of partial wave theory in dealing with leaky Lamb wave problems. These results are important in designing new type of acoustic wave sensors working in liquid phase.

    Abstract i 中文摘要 iii 誌謝 iv Table of Contents v List of Tables viii Caption of Figures ix Nomenclatures xiii Chapter 1 Introduction 1 1.1 Introduction 1 1.2 Problem Statement 3 1.3 Paper Survey 5 1.4 Motivation 8 Chapter 2 Theoretical Analysis: Partial Wave Theory 10 2.1 Elastic Wave Fields in the Plate 11 2.1.1 Anisotropic Plate 11 2.1.2 Isotropic Plate 13 2.1.3 Piezoelectric Plate 14 2.2 Elastic Wave Fields in the Fluid 16 2.2.1 Inviscid Fluid 17 2.2.2 Viscous Fluid 18 2.2.3 Dielectric and Conductivity of the Fluid 19 2.3 Boundary Conditions in the Plate/Fluid interface 20 2.3.1 Anisotropic Plate 23 a. Traction Free 23 b. Mechanical Loading 24 2.3.2 Isotropic Plate 26 a. Traction Free 26 b. Mechanical Loading 26 2.3.3 Piezoelectric Plate 27 a. Traction Free 27 b. Combined Mechanical and Electrical loading 29 2.4 Symmetry and Anti-Symmetry Modes 34 2.5 Simulation Program 37 Chapter 3 Numerical Simulation 38 3.1 Numerical Simulation 39 3.2 Conductivity Loading 51 3.3 Dielectric Loadings 54 3.4 Viscosity Loadings 58 Chapter 4 Measurement Method and Experiment Results 65 4.1 Differential Type Experiment System 66 4.1.1 Measurement Method for Velocity Change 72 4.1.2 Measurement Method for Wave Attenuation 75 4.2 Pure Water Loading on XZ-LiNbO3 Plate 77 4.3 Conductivity Loading Experiments 83 4.4 Dielectric Loading Experiments 88 4.5 Experiment Result of Viscosity Loading 90 Chapter 5 Conclusions 98 5.1 Summary 98 5.2 Conclusions 100 5.3 Suggestions and Future Works 101 Reference 102 Appendix A 107 Appendix B 111 Appendix C 114 Appendix D 116 Appendix E 122 Vita 123

    [1] D. S. Ballantine, R. W. White, S. J. Martine, A. J. Ricco, E. T. Zellers, G. C. Frye, and H. Wohltjen, Acoustic Wave Sensors: Theory, Design, and Physico-Chemical Applications. UK, London: Academic Press, 1997.
    [2] J. C. Andle, J. T. Weaver, J. F. Vetelino, D. J. McAllister, “Selective acoustic plate mode DNA sensor,” Sens. Actuators B: Chem., vol. 24, n. 1-3, pp. 129-133, 1995.
    [3] J. C. Andle, J. T. Weaver, D. J. McAllister, F. Josse, J. F. Vetelino, “Improved acoustic-plate-mode biosensor, “Sens. Actuators B: Chem., vol.13, n 1-3, pp. 437-442, 1993.
    [4] T. K. Eto and B. Rubinsky, “Lamb wave microsensor measurement of viscosity as a function of temperature of dimethylsulfoxide solutions,” Topics in heat transfer, ASME., vol 2, pp. 47-53, 1992.
    [5] T. K. Eto, B. J. Costello, S. W. Wenzel, R. M. White and B. Rubinsky, “Viscosity sensing with Lamb-wave microsensor: dimethylsulfoxide solutions viscosity as a function of temperature,” J. Biomechanical Engin., vol 115, pp. 329-331, 1993.
    [6] F. Padilla, M. Gindre, J.-Y. Le Huerou, “Model and measurements of the electrical input impedance of a plate-liquid-plate acoustic resonator,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 48, n. 3, pp. 838-843, 2001.
    [7] M. S. Weinberg, C. E. Dube, A. Petrovich, A. M. Zapata, “Fluid damping in resonant flexural plate wave device,” J. Microelectromech. Syst., vol. 12, n. 5, pp. 567-576, 2003.
    [8] M. J. Vellekoop, “Acoustic wave sensors and their technology,” Ultrasonics, vol. 36, n. 1-5, pp.7-14, 1998.
    [9] M. J. Vellekoop, A. J. Van Rhijn, G. W. Lubking, A. Venema, “All-silicon plate wave oscillator system for sensors source,” Sens. Actuators A: Physical, vol. 27, n. 1-3, pp. 699-703, 1991.
    [10] S. Liew., F. Josse, Haworth and Z. A. Shana, “Applications of lithium niobate acoustic plate mode as sensor for conductive liquids,” IEEE Ultrason. Symp. Proc., pp.285-290, 1990.
    [11] F. Josse, Z. A. Shana, D. T. Haworth, and S. Liew, “On the use of ZX-LiNbO3 acoustic plate mode devices as detectors for dilute electrolyte,” Sens. Actuators B: Chem., vol. 9, n. 2, pp. 97-112, 1992.
    [12] F. Josse, “Acoustic wave liquid-phase-based microsensors,” Sens. Actuators A: Physical, vol.44, n. 3, pp.199-208, 1994.
    [13] R. Dahint, Z. A. Shana, F. Josse, S. A. Riedel and M. Grunze, “Identification of metal ion solutions using acoustic plate mode devices and pattern recognition,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 40, n. 2, pp. 114-119, 1993.
    [14] Z. A. Shana, T. Zhou and F. Josse, “Propagation of acoustic waves at the interface between a piezoelectric crystal and isotropic viscoelastic conductive medium,” IEEE Ultrason. Symp. Proc., pp.289-294, 1991.
    [15] F. Josse and Z. A. Shana, “Electrical surface perturbation of a piezoelectric acoustic plate mode by a conductive liquid loading,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 39, n. 4, pp.512-518, 1992.
    [16] A. Viktorov, Rayleigh and Lamb Waves – Physical Theory and Applications. New York: Plenum Press, 1967.
    [17] A. Viktorov, E. K. Grishchenko and T. M. Kaekina, “An investigation of the propagation of ultrasonic surfaces at the boundary between a solid and a liquid,” Soviet Phys. Acoust., vol.9, 1963.
    [18] C. C. Tseng and R. M. White, “Propagation of piezoelectric and elastic surface waves on the basal plane of hexagonal piezoelectric crystals,” J. Appl. Phys., vol. 38, n. 11, pp. 4274-4280, 1967.
    [19] J. J. Campbell and W. R. Jones, “A method for estimating optimal crystal cuts and propagation directions for excitation of piezoelectric surface waves,” IEEE Trans. Sonics and Ultrason., vol. SU-15, no. 4, pp.209-217, 1968.
    [20] J. J. Campbell and W. R. Jones, “Propagation of surface waves at the boundary between a piezoelectric crystal and a fluid medium,” IEEE Trans. Sonics and Ultrason., vol. SU-17, no. 2, pp.71-76, 1970.
    [21] A. Nassar and E. L. Adler, “Propagation and electromechanical coupling to plate modes in piezoelectric composite membranes,” IEEE Ultrason. Symp. Proc., pp.369-372, 1983.
    [22] E. L. Adler, “Electromechanical coupling to Lamb and shear-horizontal modes in piezoelectric plates,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 36, no.2, pp.223-230, 1989.
    [23] E. L. Adler, “Matrix methods applied to acoustic waves in multi-layers,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 37, n. 6, pp. 485-490, 1990.
    [24] E. L. Adler and I-H. Sun, “Observation of leaky Rayleigh waves on a layered half-space.,” IEEE Trans. Sonics and Ultrason., vol. SU-18, no. 3, pp.181-184, 1971.
    [25] J. T. Stewart and Y. K. Yong, “Exact analysis of the propagation of acoustic waves in multilayered anisotropic piezoelectric plates,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 41, n. 3, pp. 375-390, 1994.
    [26] A. H. Nayfeh and D. E. Chimenti, “Ultrasonic leaky wave in the presence of a thin layer,” J. Appl. Phys., vol. 52, n. 8, pp. 4985-4994, 1981.
    [27] A. H. Nayfeh and P. B. Nagy, “Excess attenuation of leaky Lamb waves due to viscous fluid loading,” J. Acoust. Soc. Am., vol. 101, no. 5, pp. 2649-2658, 1997.
    [28] A. H. Nayfeh and P. B. Nagy, “Viscosity induced attenuation of longitudinal guided waves in fluid- loaded rods,” J. Acoust. Soc. Am., vol. 100, no. 3, pp. 1501-1508, 1996.
    [29] A. H. Nayfeh and H. T. Chien, “The influence of piezoelectricity on free and reflected waves from fluid-loaded anisotropic plates,”C
    [30] C.-H. Yang and D. E. Chimenti, “Acosutic waves in a piezoelectric plate loaded by a dielectric fluid,” Appl. Phys. Lett. vol. 63, n.10, pp.1328-1330, 1993.
    [31] C.-H. Yang and D. E. Chimenti, “Guided plate waves in piezoelectric immersed in a dielectric fluid. I. Analysis,” J. Acoust. Soc. Am., vol. 97, n. 4, pp. 2103-2109, 1995.
    [32] C.-H. Yang and D. E. Chimenti, “Guided plate waves in piezoelectric immersed in a dielectric fluid. II. Experiments,” J. Acoust. Soc. Am., vol. 97, n. 4, pp. 2110-2115, 1995.
    [33] C.-H. Yang and C. J. Shue, “Guided waves propagating in a piezoelectric plated immersed in a conductive fluid,” NDT&E International, vol. 34, n. 3, pp. 199-206, 2001.
    [34] C.-H. Yang and M.-F. Huang, “A study on the dispersion relations of Lamb waves propagating along LiNbO3 plate with a laser ultrasound technique,” Jpn. J. Appl. Phys., vol. 41, n. 11A, pp. 6478-6483, 2002.
    [35] C.-H. Yang and Y.-A. Lai, “Lamb waves propagating in an LiNbO3 plate under the mechanical and dielectric loadings of a fluid,” Jpn. J. Appl. Phys., vol. 43, n. 4A, pp. 1514-1518, 2004.
    [36] Sawaguchi and K. Toda, “Lamb wave propagation characteristics on water-loaded LiNbO3 thin plates,” Jpn. J. Appl. Phys. Pt.1, vol. 32, n. 5A, pp. 2388-2391, 1993.
    [37] K. Motegi and K. Toda, “Velocity curve change of leaky Lamb waves in a layered substrate induced by liquid-loading,” Jpn. J. Appl. Phys. Pt.1, vol. 38, n. 5B, pp. 3032-3035, 1999.
    [38] G. W. Farnell, Surface wave Filters, New York: Wiley, 1977.
    [39] G. W. Farnell, I. A. Cermak and P. Silvester and S. K. Wong “Capacitance and Field Distributions for Interdigital Surface-Wave Transducer,” IEEE Trans. Sonics and Ultrason., vol. SU-17, no. 3, pp.188-195, 1970.
    [40] A. H. Nayfeh, Wave Propagation in Layered Anisotropic Media: with Application to Composites, Netherlands, Amsterdam: Elsevier Science, 1995.
    [41] J. D. Achenbach, Wave Propagation in Elastic Solids, American, New York: Elsevier Science, 1984.
    [42] A. Auld, Acoustic Fields and Waves in Solids, 2nd Ed, Vol. I, Malabar, FL: Krieger, 1990, Chap. 8.
    [43] Q. Qi, “Attenuated leaky Rayleigh waves,” J. Acoust. Soc. Am., vol. 95, no. 6, pp. 3222-3231, 1994.
    [44] J. Wu and Z. Zhu, “An alternative approach for solving attenuated leaky Rayleigh waves,” J. Acoust. Soc. Am., vol. 97, no. 5, pp. 3191-3193, 1995.
    [45] Z. Zhu and J. Wu, “The propagation of Lamb waves in a plate bordered with a viscous liquid,” J. Acoust. Soc. Am., vol. 98, no. 2, pp. 1057-1064, 1995.
    [46] L. M. Brekhovskikh, Wave in Layered Media. UK, London: Academic Press, 1980, p.50.
    [47] M. E. Nokali and E. L. Adler, “A Simplified theory for semiconductor coupled surface wave convolvers,” IEEE Trans. Sonics and Ultrason., vol. SU-24, no. 3, pp.218-221, 1977.
    [48] T. M. Niemczky, S. J. Martin, G. C. Frye and A. J. Ricco, “Acoustioelectric interaction of plate modes with solutions,” J. Appl. Phys., vol. 64, n.10, 15 pp. 5002-5008, 1988.
    [49] R. Adler, “Simple theory of acoustic amplification,” IEEE Trans. Sonics and Ultrason., vol. SU-18 no. 3, pp.115-118, 1971.
    [50] T. T. Wu and T. Y. Wu, “Surface waves in coated anisotropic medium loaded with viscous liquid,” J. Appl. Mechanics., vol. 67, pp. 262-266, 2000.
    [51] K. V. Rostyne, C. Glorieus, W. Gao and etc., “Experimental Investigation of leaky Lamb Modes by an optically induced grating,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 49, n. 9, pp. 1245-1253, 2002.
    [52] Briggs, ed., Advances in Acoustic Microscopy, Vol.1, New York: Plenum Press, 1995.
    [53] Briggs and W. Arnold, ed., Advances in Acoustic Microscopy, Vol.2, New York: Plenum Press, 1996.
    [54] J.-I.Kushibiki, N. Chubachi, “Material characterization by line-focus-beam acoustic microscope,” IEEE Trans. Sonics Ultra., vol. SU-32, n. 2, pp. 189-212, 1985.

    下載圖示 校內:立即公開
    校外:2006-07-24公開
    QR CODE