| 研究生: |
劉永欣 Liu, Yung-Hsin |
|---|---|
| 論文名稱: |
原岩性質及變質作用對中國大陸東部蘇魯超高壓榴輝岩岩象及化學特性之影響 Protolith and metamorphic process controls on the petrographic and chemical characteristics of eclogites from the Sulu ultra-high pressure metamorphic terrane, eastern China |
| 指導教授: |
楊懷仁
Yang, Huai-Jen 余樹楨 Yu, Shu-Cheng |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 原岩性質 、元素化學行為 、水岩反應 、超高壓變質 、榴輝岩 |
| 外文關鍵詞: | element fractionation, fluid-rock interaction, ultrahigh-pressure metamorphism, eclogites, protolith |
| 相關次數: | 點閱:83 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
造山帶榴輝岩為基性火成岩於板塊聚合帶受高溫–高壓變質作用所形成,其成份受控於原岩性質及變質作用。許多研究致力於探討海洋型榴輝岩成份變化,以瞭解隱沒帶元素之遷移能力及分化特性。相對而言,在大陸板塊隱沒環境,其含水量較低且可達較高之變質溫度–壓力,故元素化學行為應異於海洋板塊隱沒環境,然而迄今對於大陸板塊於隱沒及折返過程中元素變化之研究相對較少。中國大陸東部大別–蘇魯縫合帶為典型大陸板塊隱沒形成之超高壓變質岩帶,此區榴輝岩成份變化大且部份岩體具異常之化學特徵,顯示超高壓榴輝岩原岩性質迥異且局部受後期地質作用影響。本研究將探討蘇魯超高壓變質岩帶中,三群榴輝岩之原岩性質及大陸隱沒過程中變質作用對榴輝岩岩象與化學特性之影響。
本研究三群地表樣本包括毛北地區中國大陸科學深鑽探(CCSD)場址西北方之高鈦鐵榴輝岩、東南方之高鋁榴輝岩及青龍山高鋁榴輝岩。毛北地區兩群榴輝岩共同特徵為重稀土元素含量低([HREE]ch = 1–6)、Sr-Nd同位素落於地函演化陣列、Nd(220 Ma)為-5.1–0.86及Hf(220 Ma)為0.2–11.5,顯示此兩群榴輝岩之原岩均為堆晶岩且受大陸地殼混染程度低。蘇魯榴輝岩之原岩年代為新元古代(650–800 Ma),文獻報導同時代揚子板塊內之火成岩部份具島弧岩漿岩特性,但亦有部份岩體為地函柱熔融之產物。通常相對不易變遷之重稀土元素及高場強元素可反映原岩性質,雖然高鈦榴輝岩中高場強元素間分化現象於島弧及大陸裂谷堆晶岩中均有報導,但高鋁榴輝岩之重稀土元素含量即使考慮變質作用影響仍遠低於大陸裂谷堆晶岩範圍。毛北榴輝岩之Nd(220 Ma)–Hf(220 Ma)變化與島弧火成岩相似,可進一步證實其原岩為島弧環境。再者,Hf(750 Ma)–Nd(750 Ma)變化顯示高鈦鐵榴輝岩之Sm/Nd比值已受變質作用影響,但Lu/Hf比值仍反映原岩性質;而高鋁榴輝岩之高場強元素及稀土元素含量則均受變質作用影響。
毛北地表高鈦鐵榴輝岩特徵為FeOtot(16.7–20.9%)、TiO2(3–4%)含量高、SiO2(38.2–42.8%)含量低,且具高場強元素間分化現象(Ti正異常而Nb-Ta-Zr-Hf負異常),此類特性與CCSD於530–600公尺所採之岩芯樣本相似。本研究之地表高鈦–鐵榴輝岩局部有角閃岩脈發育,而影響榴輝岩全岩之SiO2、Al2O3及輕稀土元素含量。部份樣本SiO2含量偏低為流體作用及變質分異作用富集石榴子石之結果;但樣本中無明顯變質分異作用富集金紅石之現象,且大部分主要元素含量與富鐵輝長岩相似,故其全岩成份主要仍反映原岩性質。此結果可利用質量平衡及結晶模擬方式驗證,CCSD淺層之高鈦及正常型榴輝岩岩芯樣本(318–380及420–470公尺)具玄武岩化學特性,其MgO含量低為岩漿演化晚期之岩漿特性,且Ti/Eu比值與球粒隕石相近並具Nb-Ta-Zr-Hf虧損,此特徵與島弧玄武岩相似。假設此類榴輝岩為初始岩漿並計算與其平衡之堆晶岩化學組成,結果顯示模擬堆晶岩含有~41%斜長石、~39%斜輝石、~8%橄欖石及~12%鈦鐵氧化物,此礦物比例指示堆晶岩形成於2–8 kb且為岩漿演化晚期之產物。模擬堆晶岩微量元素變化與實際量測之高鈦–鐵榴輝岩相似,證實高場強元素間分化現象及高鈦含量均反映其原岩特性,即島弧環境岩漿演化晚期大量結晶鈦鐵氧化物之富鐵輝長岩。故富鐵輝長岩經變質作用即可使金紅石富集成礦;然而具玄武岩原岩性質之高鈦榴輝岩中,部份樣本TiO2含量超過玄武岩範圍(> 4%),故此類樣本金紅石富集之機制可能與變質分異作用有關。
毛北地表高鋁榴輝岩之Al2O3(18.4–29.2%)及MgO(8.59–11.3%)含量高且具Sr正異常,其原岩應為富斜長石堆晶岩;與石榴子石及綠輝石平衡共存之他形藍晶石即為斜長石於榴輝岩化過程中瓦解所形成。高鋁榴輝岩之Al2O3-SiO2及Al2O3-CaO呈反比趨勢,此特性非富斜長石堆晶岩所有,且部分樣本Al2O3含量已超過堆晶岩範圍(> 26%)代表其全岩成份受變質作用影響。低Al2O3含量樣品之質量平衡計算結果顯示,其原岩為橄欖石蘇長輝長岩。高鋁榴輝岩中藍晶石及黝簾石變質斑晶含石榴子石及綠輝石包裹體,其形成機制與包裹體礦物瓦解有關。此區變質溫壓條件及礦物組合與榴輝岩部分熔融實驗結果不符,但熱力學計算結果顯示黝簾石變質斑晶可於高壓環境下透過流體作用形成,故水岩反應為促使前期礦物瓦解並形成變質斑晶之主因。高鋁榴輝岩依微量元素變化可分作兩群La/Yb、Zr/Sm比值迥異之樣本群,推測兩群榴輝岩微量元素變化亦與形成變質斑晶之流體作用有關。兩群樣本之MgO及Ni含量變化小且Sr-Nd同位素比值相近,故其原岩性質相似且流體來源相同,推測兩群樣本微量元素變化應反映流體成份隨流動距離改變之結果。高壓環境下流體可溶解Al、Si、高場強元素、輕稀土元素及大離子親石元素,當流體近距離遷移時,水岩反應將形成次生含鈣金紅石、鋯石及藍晶石變質斑晶,使此群樣本呈高Zr/Sm及Ti/Gd比值。而流體移動至較遠距離,則使榴輝岩增生藍晶石及黝簾石變質斑晶,並富集輕稀土元素及大離子親石元素。由此可知大陸地殼隱沒過程,榴輝岩受流體作用可造成元素強烈分化,但元素之遷移距離有限,故隱沒帶釋放之元素主要應源自於隱沒沈積物。
青龍山榴輝岩依組構可分作等粒狀、葉理狀及變斑晶狀,各類樣本含不等量角閃石、多矽白雲母及綠簾石/黝簾石含水變質斑晶。其中變斑晶狀榴輝岩之含水變質斑晶含量最高;此類樣本石榴子石呈顆粒狀、環礁狀及變斑晶狀,且均具複雜之化學環帶,成份由高鈣–低鐵漸變為低鈣–高鐵。通常變斑晶狀石榴子石核心成分為高鈣–低鐵,與含水變質斑晶含量較少之等粒狀及葉理狀榴輝岩相似;而低鈣–高鐵石榴子石則常與含水變質斑晶緊鄰,故推測高鈣–低鐵石榴子石形成於峰期變質階段,而低鈣–高鐵成份則與變質斑晶生長有關。變斑晶狀榴輝岩中,環礁狀石榴子石中綠輝石、多矽白雲母及角閃石包裹體與基質中相同礦物相成份相似,有時石榴子石沿基質顆粒邊緣發育,顯示環礁狀石榴子石形成於峰期變質礦物之後。相同樣本中,顆粒狀石榴子石具多個高鈣–低鐵之核,且外圍由低鈣–高鐵成份組成。由以上特徵推測環礁狀石榴子石於後期地質作用階段透過增生及顆粒間接合而形成。熱力學計算結果顯示,不同類型榴輝岩之峰期變質條件均為749–782 oC、31.5–36.0 kb,而變質斑晶生長階段為岩體折返初期之角閃石–榴輝岩相(755–791 oC、18.3–19.8 kb)。通常大陸隱沒板塊折返初期,因快速降壓而釋放大量流體。青龍山地區高壓石英岩脈應形成於此階段,由於其礦物組合與變質斑晶相似,故推斷榴輝岩中變質斑晶為折返初期水岩反應之結果,此推論仍需透過同位素方法驗證。
The orogenic eclogites are metamorphosed from the mafic rocks under high P-T conditions in the collision zone, and their compositions are mainly controlled by the protolith characteristics and metamorphic modifications. Many researches have focused on the chemical variations of oceanic eclogites to investigate the element mobility and fractionation in subduction zone. Contrasting to the oceanic subduction zone, the subducted continental slab is characterized by relatively dry and higher metamorphic grade; therefore, the elemental behaviors should be different between these two settings. However, the chemical variations during subduction and exhumation of continental slab have not been intensively investigated. The Dabie-Sulu ultrahigh-pressure metamorphic belt, located at Eastern China, is a typical continental subduction zone. Eclogites in this region show large compositional variation and anomalies in chemical signatures, reflecting their distinct protolith features and regional metamorphic modification. In this study, three groups of eclogites were investigated to further discuss the impact of protolith features and subducted processes on the chemical and petrographic characteristics of the continental eclogites.
Three groups of surface samples include high Fe-Ti eclogites and high-Al eclogites from northwest and southeast of CCSD (Chinese Continental Scientific Drilling) site near Maobei, and hydrous mineral-rich eclogites were collected from Qinglongshan. The Maobei eclogites have low HREE contents ([HREE]ch = 1–6), Sr-Nd isotopic ratios within the mantle array, εNd(220 Ma) of -5.1–0.86, and εHf(220 Ma) of 0.2–11.5, indicating their protoliths were cumulate rocks with limited extent of crustal contamination. The protoliths of Sulu eclogites are contemporary with the Neoproterozoic magmatisms in the Yangtze Block, which were proposed as “superplume” event related to the rifting of the Rodinia supercontinent or arc-related magmatism. The so-called immobile elements, such as high field strength elements (HFSE) and heavy rare earth elements (HREE), of eclogites usually reflect their protolith origins. The HFSE-decoupling in the high Fe-Ti eclogites can be observed in both arc and rift cumulates; whereas, the low HREE contents of the high-Al eclogites are different from the rift cumulates, even when intensive chemical modification is considered for the samples. The Nd(220 Ma) and Hf(220 Ma) values of the Maobei eclogites are similar to those of arc magmatic rocks, further confirming their arc origin. The Nd(750 Ma)-Hf(750 Ma) variations show that Lu/Hf ratio in the high Fe-Ti eclogites still reflect their protolith features; however, the Sm/Nd ratio in the high Fe-Ti eclogites and HFSE and HREE contents in the high-Al eclogites are altered during metamorphism.
The surface high Fe-Ti eclogites from Maobei show low SiO2 (38.242.8 %), high iron (16.720.9 %) and TiO2 (34 %) contents, and HFSE decoupling (Ti-enrichment with Nb-Ta-Zr-Hf depletion). These geochemical features are correspondent with the high Fe-Ti eclogites cored by the CCSD project at the depth range of 530600 m. The surface high Fe-Ti eclogites were locally developed amphibolitic veins to affect the SiO2, Al2O3, and LREE abundances. Some samples with low SiO2 reflect the combined effect of fluid infiltration and garnet enrichment by metamorphic segregation. Besides, there is no evidence for rutile segregation, and most of major oxide contents of the Maobei high Fe-Ti eclogites are similar to those of ferrogabbros. These results indicate that their compositions mainly reflect the protolith characteristics, which can be proved by the mass balance calculation and crystallization modeling. The normal and high-Ti eclogites cored at the depth of 318380 m and 420470 m in the CCSD site represent basaltic compositions with low MgO content and Nb-Ta-Zr-Hf depletions, which are typical features of evolved lava in arc setting. Assuming these eclogites as initial melts, the gabbro compositions equilibrated with these basaltic melts can be calculated. The modeled gabbros contain ~41% plagioclase, ~39% clinopyroxene, ~8% olivine, and ~12% Fe-Ti oxides, consistent with crystallization at 2–8 kb and the late stage of magmatic evolution. The modeled results of trace element patterns in gabbros are similar to the high Fe-Ti eclogites studied in this study. This inferred that the HFSE-decoupling is mainly the protolith control, which is related to ferrogabbros with large amounts of Fe-Ti oxides crystallized from evolved basalts in arc setting. The rutile enrichments in eclogites with ferrogabbroic protoliths are resulted from metamorphism. However, some high-Ti eclogites derived from basalts have high TiO2 content (> 4%) exceeding the range of basalt, indicating the role of metamorphic segregation to concentrate rutile.
For the Maobei high-Al eclogites, characterized by high Al2O3 (18.4–29.2 %), MgO (8.6–11.3%) contents, positive Sr anomalies, and the occurrence of kyanite neoblasts in equilibrium with garnet and omphacite, require > 30% cumulate feldspar in their protoliths. However, the inverse Al2O3-SiO2 and Al2O3-CaO correlations and extremely high Al2O3 abundances (> 26 %) of three high-Al samples cannot be explained by the magmatic processes, but most likely reflecting the metamorphic modifications. The results of mass balance calculation from the low-Al samples indicate that their protoliths were olivine gabbronorites. The kyanite and zoisite porphyroblasts with garnet and omphacite inclusions were formed at expense of these inclusion minerals. The P-T conditions and mineral assemblages of the studied eclogites are different from the experiments of eclogite partial melting; whereas, the thermodynamic calculation shows that the zoisite porphyroblasts can be formed by fluid interactions under high pressure conditions. Furthermore, trace element variations between group I eclogites with low La/Yb but high Zr/Sm ratios and group II eclogites with contrasting element ratios are probably related to the fluid interactions. All samples with similar MgO, Ni contents and Sr-Nd isotopic ratios reflect their comparable protolith compositions and the similar sources for interacting fluids. Therefore, the trace element variations in the studied eclogites can be explained by the compositional evolution during fluid migration. Under high-pressure conditions, fluids were enriched in Al, Si, HFSE, REE, and LILE. Upon migration, the fluids first precipitated HFSE into the group I samples, then, LILE and LREE into the group II samples. This model is supported by the occurrence of zoisite porphyroblasts in the group II samples, and interstitial zircon and clusters of small rutile grains along annealed fractures in the group I samples. Our interpretation for the observed compositional variations implies limited element mobility during subduction and exhumation of continental lithosphere, consistent with existing models, which proposed that the chemical flux to metasomatized mantle wedge are mainly from subducted sediments.
The hydrous mineral-rich eclogites from Qinglongshan can be divided into three subgroups with equigranular, foliated, and porphyroblastic textures, respectively. Three groups of samples contain various amounts of hydrous porphyroblasts, i.e., amphibole, phengite, and epidote/zoisite. The porphyroblastic eclogites with highest abundances of hydrous porphyroblasts are composed of granular, atoll, and porphyroblastic garnets, which show complex chemical zoning ranging from high-Ca–low-Fe to low-Ca–high-Fe. Generally, the high-Ca–low-Fe core of garnet porphyroblasts in porphyroblastic eclogites are compositionally similar to garnets in the equigranular and foliated eclogites, which have less abundance of hydrous porphyroblasts. The low-Ca–high-Fe garnets are closely associated with the hydrous minerals, suggesting that the former composition represented the peak metamorphism, but the forming mechanism for the later one was possibly related to the hydrous porphyroblasts. In the porphyroblastic eclogites, the matrix grains of omphacite, phengite, and amphibole and inclusions of those minerals in atoll garnets have similar compositions. Sometimes, garnets are developed along the matrix grain boundaries. These indicate that the atoll garnets were formed after peak metamorphic assemblage. In the same samples, granular garnets contain many cores with high-Ca–low-Fe compositions, and their outer portions are composed of low-Ca–high-Fe compositions. It is supposed that the atoll garnets were formed by overgrowth and coalescence of grains. The peak metamorphic conditions for three subgroups of eclogites are 49–782 oC and 31.5–36.0 kb; subsequently, the porphyroblasts are crystallized under amphibole-eclogite facies (755–791 oC and 18.3–19.8 kb) during early exhumation stage. Generally, fluids were released from the subducted continental slab during early exhumation stage because of the rapid decompression. In Qinglongshan area, the high-pressure quartz veins formed at this stage contain similar minerals to the porphyroblastic assemblage in eclogites; therefore, the porphyroblast formation is probably related to the fluid-rock interaction during early exhumation stage. This explanation should be further verified by using the isotopic signatures.
Abu El-Ela, F.F., 1996. The petrology of the Abu Zawal gabbroic intrusion, Eastern Desert, Egypt: an example of an island-arc setting. J. Afr. Earth Sci. 22, 147–157.
Aït-Djafer, S., Ouzegane, K., Paul-Liégeois, J., Kienast, J.R., 2003. An example of post-collisional mafic magmatism: the gabbro-anorthosite layered complex from the Tin Zebane area (western Hoggar, Algeria). J. Afr. Earth Sci. 37, 313–330.
Ames, L., Zhou, G., Xiong, B., 1996. Geochronology and isotopic character of ultrahigh-pressure metamorphism with implications for collision of the Sino-Korean and Yangtze Cratons, central China. Tectonics 15, 472–489.
Arcuri, T., Ripley, E.M., Hauck, S., 1998. Sulfur and oxygen isotope studies of the interaction between pelitic xenoliths and basaltic magma at the Babbitt and serpentine Cu-Ni deposits, Duluth complex, Minnesota. Econ. Geol. 93, 1063–1075.
Audétat, A., Keppler, H., 2005. Solubility of rutile in subduction zone fluids, as determined by experiments in the hydrothermal diamond anvil cell. Earth Planet. Sci. Lett. 232, 393–402.
Batanova, V.G., Pertsev, A.N., Kamenetsky, V.S., Ariskin, A.A., Mochalov, A.G., Sobolev, A.V., 2005. Crustal evolution of island-arc ultramafic magma: Galmoenan pyroxenite-dunite plutonic complex, Koryak highland (far east Russia). J. Petrol. 46, 1345–1366.
Beard, J.S., Barker, F., 1989. Petrology and tectonic significance of gabbros, tonalities, shoshinites, and anorthosites in a late Paleozoic arc-root complex in the Wrangellia terrane, southern Alaska. J. Geol. 97, 667–683.
Becker, H., Jochum, K.P., Carlson, R.W., 1999. Constraints from high-pressure veins in eclogites on the composition of hydrous fluids in subduction zones. Chem. Geol. 160, 291–308.
Becker, H., Jochum, K.P., Carlson, R.W., 2000. Trace element fractionation during dehydration of eclogites from high-pressure terranes and the implications for element fluxes in subduction zones. Chem. Geol. 163, 65–99.
Benoit, M., Polvé, M., Ceuleneer, G., 1996. Trace element and isotopic characterization of mafic cumulates in a fossil mantle diaper (Oman Ophiolite). Chem. Geol. 134, 199–214.
Bernstein, S., Keleman, P.B., Tegner, C., Kurz, M.D., 1998. Post-breakup basaltic magmatism along the East Greenland tertiary rifted margin. Earth Planet. Sci. Lett. 160, 845–862.
Bindeman, I.N., Davis, A.M., 2000. Trace element partitioning between plagioclase and melt: investigation of dopant influence on partition behavior. Geochim. Cosmochim. Acta 64, 2863–2878.
Bose, M.K., 1973. Petrology and geochemistry of the igneous complex of Mount Girnar, Gujarat, India. Contrib. Mineral. Petrol. 39, 247–266.
Carswell, D.A., Harley, S.L., 1990. Mineral barometry and thermometry. In: Eclogite Facies Rocks. (ed. Carswell, D.A.), pp. 83–110. Blackie, Glasgow.
Chalot-Prat, F., Ganne, J., Lombard, A., 2003. No significant element transfer from the oceanic plate to the mantle wedge during subduction and exhumation of the Tethys lithosphere (Western Alps). Lithos 69, 69–103.
Chavagnac, V., Jahn, B.M., 1996. Coesite-bearing eclogites from the Bixiling Complex, Dabie Mountains, China: Sm-Nd ages, geochemical characteristics and tectonic implications. Chem. Geol. 133, 29–51.
Chen, R.-X., Zheng, Y.-F., Zhao, Z.-F., Tang, J., Wu, F.-Y., Liu, X.-M., 2007a. Zircon U-Pb age and Hf isotope evidence for contrasting origin of bimodal protoliths for ultrahigh-pressure metamorphic rocks from the Chinese Continental Scientific Drilling project. J. Metamorph. Geol. 25, 873–894.
Chen, R.-X., Zheng, Y.-F., Gong, B., Zhao, Z.-F., Gao, T.-S., Chen, B., Wu, Y.-B., 2007b. Origin of retrograde fluid in ultrahigh-pressure metamorphic rocks: Constraints from mineral hydrogen isotope and water content changes in eclogite–gneiss transitions in the Sulu orogen. Geochim. Cosmochim. Acta 71, 2299–2325.
Cheng, H., Nakamura, E., Kobayashi, K., Zhou, Z., 2007. Origin of atoll garnets in eclogites and implications for the redistribution of trace elements during slab exhumation in a continental subduction zone. Am. Mineral. 92, 1119–1129.
Choi, S.H., Mukasa, S.B., Kwon, S.-T., Andronikov, A.V., 2006. Sr, Nd, Pb and Hf isotopic compositions of late Cenozoic alkali basalts in South Korea: Evidence for mixing between the two dominant asthenospheric mantle domains beneath East Asia. Chem. Geol. 232, 134–151.
Chopin, C., 1984. Coesite and pure pyrope in high-grade blueschists of the Western Alps: A first record and some consequences. Contrib. Mineral. Petrol. 86, 107–118.
Chung, S.-L., Liu, D.-Y., Ji, J.-Q., Chu, M.-F., Lee, H.-Y., Wen, D.-J., Lo, C.-H., Lee, T.-Y., Qian, Q., Zhang, Q., 2003. Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet. Geology 31, 1021–1024.
Claeson, D.T., Meurer, W.P., 2004. Fractional crystallization of hydrous basaltic “arc-type” magmas and the formation of amphibole-bearing gabbroic cumulates. Contrib. Mineral. Petrol. 147, 288–304.
Clarke, G.L., Powell, R., Fitzherbert, J.A., 2006. The lawsonite paradox: a comparison of field evidence and mineral equilibria modeling, Australia. J. Metamorph. Geol. 24, 715–725.
Conrad, M.E., Naslund, H.R., 1989. Modally-graded rhythmic layering in the Skaergaard intrusion. J. Petrol. 30, 251–269.
Dempster, T.J., Hay, D.C., Gordon, S.H., Kelly, N.M., 2008. Micro-zircon: origin and evolution during metamorphism. J. Metamorph. Geol. 26, 499–507.
Dewey, J.F., 1998. Extensional collapse of orogens. Tectonics 7, 1123–1139.
Domanik, K.J., Holloway, J.R., 1998. Experimental determination of the stability and phase relations of phengitic muscovite in a calcareous metapelite from the Dabie Mountains, China. International Workshop on UHP Metamorphism and Exhumation, Abstract, pp. 206–207.
Duchesne, J.C., 1999. Fe-Ti deposits in Rogaland anorthosites (South Norway): geochemical characteristics and problems of interpretation. Miner. Depoista 34, 182–198.
Eales, H.V., Robey, J.V.A., 1976. Differentiation of tholeiitic Karoo magma at Birds River, South Africa. Mineral. Petrol. 56, 101–117.
Eggins, S.M., Woodhead, J.D., Kinsley, L.P.J., Mortimer, G.E., Sylvester, P., McCulloch, M.T., Hergt, J.M., Handler, M.R., 1997. A simple method for the precise determination of 40 trace elements in geological samples by ICPMS using enriched isotope internal standardization. Chem. Geol. 134, 311–326.
Elliott, T., 2003. Tracers of the Slab. In: Inside the Subduction Factory. (ed. Eiler, J.M.), pp. 23–45. Washington, DC, American Geophysical Union.
Enami, M., Nagasaki, A., 1999. Prograde P-T path of kyanite eclogites from Junan in the Sulu ultrahigh-pressure province, eastern China. Isl. Arc 8, 459–474.
Ernst, W.G., Maruyama, S., Wallis, S., 1997. Buoyancy-driven, rapid exhumation of ultrahigh-pressure metamorphosed continental crust. Proc. Natl. Acad. Sci. 94, 9532–9537.
Force, E.R., 1991. Geology of titanium-mineral deposits. Spec. Pap. Geol. Soc. Am. 259, 14-16.
Franz, L., Romer, R.L., Klemd, R., Schmid, R., Oberhänsli, R., Wagner, T., 2001. Eclogite-facies quartz veins within metabasites of the Dabie Shan (eastern China): pressure–temperature–time–deformation path, composition of the fluid phase and fluid flow during exhumation of high-pressure rocks. Contrib. Mineral. Petrol. 141, 322–346.
Frey, F.A., Wise, W.S., Garcia, M.O., West, H., Kwon, S.-T., Kennedy, A., 1990. Evolution of Mauna Kea volcano, Hawaii: petrologic and geochemical constraints on postshield volcanism. J. Geophs. Res. 95, 1271–1300.
Gaetani, G.A., Watson, E.B., 2002. Modeling the major-element evolution of olivine-hosted melt inclusions. Chem. Geol. 183, 25–41.
Gao, J., John, T., Klemd, R., Xiong, X., 2007. Mobilization of Ti–Nb–Ta during subduction: Evidence from rutile-bearing dehydration segregations and veins hosted in eclogite, Tianshan, NW China. Geochim. Cosmochim. Acta 71, 4974–4996.
Gladney, E.S., Roelandts, I., 1988. 1987 compilation of working values and descriptions for 383 geostandards. Geostand. Geoanal. Res. 118, 1–158.
Goldstein, J.I., Newbury, D.E., Echlin, P., Joy, D.C., Fiori, F., Lifshin, E., 1981. Scanning Electron Microscopy and X-ray Microanalysis. Plenum Press, New York.
Green, T.H., Adam, J., 2003. Experimentally-determined trace element characteristics of aqueous fluid from partially dehydrated mafic oceanic crust at 3.0 GPa, 650–700 °C. Eur. J. Mineral. 15, 815–830.
Greene, A.R., DeBari, S.M., Kelemen, P.B., Blusztajn, J., Clift, P.D., 2006. A detailed geochemical study of Island arc crust: the Talkeetna arc section, south-central Alaska. J. Petrol. 47, 1051–1093
Grove, T.L., Kinzler, R.J., Bryan, W.B., 1992. Fractionation of mid-ocean ridge basalt (MORB). Am. Geophys. Union Geophys. Monogr. vol. 71, pp. 281–310.
Grove, T.L., Elkins-Tanton, L.T., Parman, S.W., Chatterjee, N., Muntener, O., Gaetani, G.A., 2003. Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contrib. Mineral. Petrol. 145, 515–533.
Habler, G., Thöni, M., Sölva, H., 2006. Tracing the high pressure stage in the polymetamorphic Texel Complex (Austroalpine basement unit, Eastern Alps): P-T-t-d constraints. Mineral. Petrol. 88, 269–296.
Hacker, B.R., Ratschbacher, L., Webb, L., Ireland, T., Walker, D., Dong, S., 1998. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling–Dabie Orogen, China. Earth Planet. Sci. Lett. 161, 215–230.
Hansen, H., Nielsen, T.F.D., 1999. Crustal contamination in Palaeogene East Greenland flood basalts: plumbing system evolution during continental rifting. Chem. Geol. 157, 89–118.
Harris, C., 1995. Oxygen isotope geochemistry of the Mesozoic anorogenic complexs of Damaraland, northwest Namibia: evidence for crustal contamination and its effect on silica saturation. Contrib. Mineral. Petrol. 122, 308–321.
Hart, S.R., Dunn, T., 1993. Experimental cpx/melt partitioning of 24 trace elements. Contrib. Mineral. Petrol. 113, 1–8.
Hauri, E.H., Wagner, T.P., Grove, T.L., 1994. Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts. Chem. Geol. 117, 149–166.
Hermann, J., Spandler, C., Hack, A., Korsakov, A.V., 2006. Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks: Implications for element transfer in subduction zones. Lithos 92, 399–417.
Hirajima, T., Ishiwatari, A., Cong, B., Zhang, R., Banno, S., Nozaka, T., 1990. Coesite from Mengzhong eclogite at Donghai county, northeastern Jiangsu province, China. Mineral. Mag. 54, 579–583.
Hirschmann, M.M., Stopler, E., 1996. A possible role of garnet pyroxenite in the origin of the ‘garnet signature’ in the MORB. Contrib. Mineral. Petrol. 124, 185–208.
Holland, T., Blundy, J., 1993. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib. Mineral. Petrol. 116, 433–447.
Holland, T.J.B., 1979. High water activities in the generation of high pressure kyanite eclogites of the Tauern Window, Austria. J. Geol. 87, 1–27.
Holland, T.J.B., Powell, R., 1998. An internally consistent thermodynamic data set for phases of petrological interest. J. Metamorph. Geol. 16, 309–343.
Hooper, P.R., Hawkesworth, J., 1993. Isotopic and geochemical constraints on the origin and evolution of the Columbia River basalt. J. Petrol. 34, 1203–1246.
Hooper, P.R., 2000. Chemical discrimination of Columbia river basalt flows. Geochem. Geophys. Geosyst. 1, doi: 10.102912000GC000040.
Huang, S, Frey, F.A., 2005. Recycled oceanic crust in the Hawaiian plume: evidence from temporal geochemical variations within the Koolau Shield. Contrib. Mineral. Petrol. 149, 556–575.
Hung, Y.-C., 2009. Chemical compositions and Sr-Nd-Hf isotopes of Lutao volcanic rocks: significances on magmatic processes and source characteristics. Earth Sciences Department, Taiwan, National Cheng-Kung University. Master: 77. (Chinese with English Abstract)
Hwang, S.-L., Shen, P., Chu, H.-T., Yui, T.-F., 2000. Nanometer-size -PbO2type TiO2 in garnet: A thermobarometer for ultrahigh-pressure metamorphism. Science 288, 321–324.
Innocent, C., Michard, A., Malengreau, N., Loubet, M., Noack, Y., Benedetti, M., Hamelin, B., 1997. Sr isotopic evidence for ion-exchange buffering in tropical laterites from the Paraná, Brazil. Chem. Geol. 136, 219–232.
Jahn, B.-M., Cornichert, J., Cong, B.L., Yui, T.-F., 1996. Ultrahigh-Nd eclogites from an ultrahigh-pressure metamorphic terrane of China. Chem. Geol., 127, 61–79.
Jahn, B.-M., 1998. Geochemical and isotopic characteristics of UHP eclogites and ultramafic rocks of the Dabie orogen: implications for continental subduction and collisional tectonics. In: When continents collide: geodynamics and geochemistry of ultrahigh-pressure rocks. (eds. Backer, B., Liou, J.G.), vol. 10, pp. 203–239.
Jahn, B.-M., 1999. Sm-Nd isotope tracer study of UHP metamorphic rocks: implications for continental subduction and collisional tectonics. Int. Geol. Rev. 41, 859–885.
Jahn, B.-M., Rumble, D., Liou, J.-G., 2003a. Geochemistry and isotope tracer study of UHP metamorphic rocks. In: Ultrahigh Pressure Metamorphism: EMU Notes in Mineralogy. (eds. Carswell, A.D., Compagnoni, R.), vol. 5, pp. 365–414.
Jahn, B.-M., Fan, Q., Yang, J.-J., Henin, O., 2003b. Petrogenesis of the Maowu pyroxenite-eclogite body from the UHP metamorphic terrane of Dabieshan: chemical and isotopic constraints. Lithos 70, 243–267.
Jahn, B.-M., Liu, X., Yui, T.-F., Morin, N., Coz, M.B-L., 2005. High-pressure/ultrahigh-pressure eclogites from the Hong’an block, east-central China: geochemical characterization, isotope disequilibrium and geochronological controversy. Contrib. Mineral. Petrol. 149, 499–526.
Jicha, B.R., Singer, B.S., Brophy, J.G., Fournelle, J.H., Johnson, C.M., Beard, B.L., Lapen, T.J., Mahlen, N.J., 2004. Variable impact of the subducted slab on Aleutian island arc magma sources: evidence from Sr, Nd, Pb, and Hf isotopes and trace element abundances. J. Petrol. 45, 1845–1875.
John, T., Schenk, V., 2003. Partial eclogitisation of gabbroic rocks in a late Precambrian subduction zone (Zambia): prograde metamorphism triggered by fluid infiltration. Contrib. Mineral. Petrol. 146, 174–191.
John, T., Scherer, E.E., Haase, K., Schenk, V., 2004. Trace element fractionation during fluid-induced eclogitization in a subduction slab: trace element and Lu-Hf-Sm-Nd isotope systematics. Earth Planet. Sci. Lett. 227, 441–456.
John, T., Klemd, R., Gao, J., Garbe-Schönberg, C.-D., 2008. Trace-element mobilization in slabs due to non steady-state fluid–rock interaction: Constraints from an eclogite-facies transport vein in blueschist (Tianshan, China). Lithos 103, 1–24.
Jourdan, F., Bertrand, H., Schärer, U., Blichert-Toft, J., Féraud, G., Kampunzu, A.B., 2007. Major and trace element and Sr, Nd, Hf, and Pb isotope compositions of the Karoo large igneous province, Botswana-Zimbabwe: lithosphere vs mantle plume contribution. J. Petrol. 48, 1043–1077.
Kampunzu, A.B., Tombale, A.R., Zhai, M., Bagai, Z., Majaule, T. Modisi, M.P., 2003. Major and trace element geochemistry of plutonic rocks from Francistown, NE Botswana: evidence for a Neoarchaean continental active margin in the Zimbabwe craton. Lithos 71, 431–460.
Kato, T., Enami, M., Zhai, M., 1997. Ultra-high-pressure (UHP) marble and eclogite in the Su-Lu UHP terrane, eastern China. J. Metamorph. Geol. 15, 169–182.
Kent, A.J.R., Baker, J.A., Wiedenbeck, M., 2002. Contamination and melt aggregation processes in continental flood basalts: constraints from melt inclusions in Oligocene basalts from Yemen. Earth Planet. Sci. Lett. 202, 577–594.
Kerr, A.C., Kent, R.W., Thomson, B.A., Seedhouse, J.K., 1999. Geochemical evolution of the Tertiar Mull volcano, western Scotland. J. Petrol. 40, 873–908.
Klewin, K.W., 1990. Petrology of the Proterozoic Potato River layered intrusion, northern Wisconsin, USA. J. Petrol. 31, 1115–1140.
Latypov, R., Chistyakova, S., Alapieti, T., 2007. Revisiting problem of chilled margins associated with marginal reversals in maficultramafic intrusive bodies. Lithos 99, 178–206.
Lee, D.-C., Halliday, A.N., Hein, J.R., Burton, K.W., Christensen, J.N. Gunther, D., 1999. Hafnium isotope stratigraphy of ferromanganese crust. Science 285, 1052–1054.
Leeman, W.P., Vitaliano, G.J., Prinz, M., 1976. Evolved lavas from the Snake River Plain: craters of the Moon National Monument, Idaho. Contrib. Mineral. Petrol. 56, 35–60.
Leitch, A.M., Davies, G.F., 2001. Mantle plumes and flood basalts: Enhanced melting from plume ascent and an eclogite component. J. Geophys. Res. 106, 2047–2059.
Li, S., Xiao, Y., Liu, D., Chen, Y., Ge, N., Zhang, R., Hart, S.R., Wang, S., 1993. Collision of the North China and Yangtze blocks and formation of coesite-bearing eclogites: Timing and processes. Chem. Geol. 109, 89–111.
Li, S., Jagoutz, E., Chen, Y., Li, Q., 2000. Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, central China. Geochim. Cosmochim. Acta 64, 1077–1093.
Li, X.-P., Zheng, Y.-F., Wu, Y.-B., Chen, F., Gong, B., Li, Y.-L., 2004. Low-T eclogite in the Dabie terrane of China: Petrological and isotopic constraints on fluid activity and radiometric dating. Contrib. Mineral. Petrol. 148, 443–470.
Li, Z.-X., Zhang, L., Powell, C.M., 1995. South China in Rodinia: Part of the missing link between Australia–East Antarctica and Laurentia? Geology 23, 407–410.
Li, Z.-X., Li, X.-H., Kinny, P.D., Wang, J., Zhang, S., Zhou, H., 2003. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia. Precambrian Res. 122, 85–109.
Ling, W., Gao, S., Zhang, B., Li, H., Liu, Y., Cheng, J., 2003. Neoproterozoic tectonic evolution of the northwestern Yangtze craton, South China: implications for amalgamation and break-up of the Rodinia Supercontinent. Precambrian Res. 122, 111–140.
Liou, J.-G., Zhang, R.-Y., 1996. Occurrences of intergranular coesite in ultrahigh-P rocks from the Sulu region, eastern China: implications for lack of fluid during exhumation. Am. Mineral. 81, 1217–1221.
Liou, J.G., Zhang, R.Y., Ernst, W.G., 1997. Lack of fluid during ultrahigh-P metamorphism in the Dabie-Sulu region, eastern China. Proc. 30th Intern. Geol. Congr. 17 (II), 141–155.
Liou, J.G., Ernst, W.G., Zhang, R.Y., Tsujimori, T., Jahn, B.M., 2009. Ultrahigh- pressure minerals and metamorphic terranes – The view from China. J. Asian Earth Sci. 35, 199–231.
Lissenberg, C.J., van Staal, C.R., Bédard, J.H., Zagorevski, A., 2005. Geochemical constraints on the origin of the Annieopsquotch ophiolite belt, Newfoundland Appalachians. GSA Bull. 117, 1413–1426.
Liu, Y.-S., Zhang, Z.-M., Lee, C.-T., Gao, S., Zong, K.-Q., 2005a. Decoupled high high-Ti from low-Nb (Zr) of eclogites from the CCSD: Implications for magnetite fractional crystallization in basalt chamber. Acta Petrol. Sin. 21, 339–346. (in Chinese with English abstract)
Liu, F.-L., Xue, H.-M., Meng, F.-C., Xu, Z.-Q., Li, T.-F., Chen, S.-Z., 2005b. Sm-Nd dating of eclogites from the main drill hole of the Chinese Continental Scientific Drilling Project and outcrops in the southwestern Sulu Terrane, eastern China. Geol. Chin. 32, 195–204.
Liu, J., Ye, K., Sun, M., 2006. Exhumation P-T path of UHP eclogites in the Hong’an area, western Dabie Mountains, China. Lithos 89, 154–173.
Liu, Y.-H., Yang, H.-J., Shau, Y.-H., Meng, F. C., Zhang, J.-X., Yang, J.-S., Xu, Z.-Q., Yu, S.-C., 2007. Compositions of high Fe-Ti eclogites from the Sulu UHP metamorphic terrane, China: HFSE decoupling and protolith characteristics. Chem. Geol. 239, 64–82.
Ma, J.-L., Wei, G.-J., Xu, Y.-G., Long, W.-G., Sun, W.-D., 2007. Mobilization and re-distribution of major and trace elements during extreme weathering of basalt in Hainan Island, South China. Geochim. Cosmochim. Acta 71, 3223–3237.
Maier, W.D., Arndt, N.T., Curl, E.A., 2000. Progressive crustal contamination of the Bushveld complex: evidence from Nd isotopic analyses of the cumulate rocks. Contrib. Mineral. Petrol. 140, 316–327.
Maji, A.K., Sarkar, S.S., 2004. Quantitative genetic modeling of the Turkel anorthosite, Eastern Ghats Belt, Orissa, India. J. of Asian Earth Sci. 24, 199–211.
Manning, C.E., 1998. Fluid composition at the blueschist-eclogite transitions in the model system Na2O-MgO-Al2O3-SiO2-H2O-HCl. Schweiz. Mineral. Petrogr. Mitt. 78, 225–242.
Manning, C.E., 2004. The chemistry of subduction-zone fluids. Earth Planet. Sci. Lett. 223, 1–16.
Maruyama, S., Liou, J.G., Terabayashi, M., 1996. Blueschists and eclogites of the world and their exhumation. Int. Geol. Rev. 38, 485–594.
Massonne, H.J., 1992. Evidence for low-temperature ultrapotassic siliceous fluids in subduction zone environment in the system K2O-MgO-Al2O3-SiO2-H2O (KMASH). Lithos 28, 421–434.
Markl, G., 2001. REE constraints on fractionation processes of massive-type anorthosites on the Lofoten Island, Norway. Mineral. Petrol. 72, 325–351.
Mathison, C.I., Hamlyn, P.R., 1987. The McIntosh layered troctoliteolivine gabbro intrusion, East Kimberly, western Australia. J. Petrol. 28, 211–234.
McBirney, A.R., 1998. The Skaergaard layered series. Part V. Included trace elements. J. Petrol. 39, 255–276.
McKay, G., Wagstaff, J., Yang, S.R., 1986. Zirconium, hafnium, and rare earth element partition coefficients for ilmenite and other minerals in high-Ti lunar mare basalts: an experimental study. J. Geophys. Res. 91, 229–237.
Miller, C., Stosch, H.-G., Hoernes, S., 1988. Geochemistry and origin of ecloigtes from the type locality Koralpe and Saualpe, Eastern Alps, Austria. Chem. Geol. 67, 103–118.
Miller, C., Zanetti, A., Thöni, M., Konzett, J., 2007. Eclogitisation of gabbroic rocks: Redistribution of trace elements and Zr in rutile thermometry in an Eo-Alpine subduction zone (Eastern Alps). Chem. Geol. 239, 96–123.
Milner, S.C., Le Roex A.P., 1996. Isotope characteristics of the Okenyenya igneous complex, northwestern Namibia: constraints on the composition of the early Tristan plume and the origin of the EM1 mantle component. Earth Planet. Sci. Lett. 141, 277–291.
Mitchell, J.N., Scoates, J.S., Frost, C.D., 1995. High-Al gabbros in the Laramie Anorthosite Complex, Wyoming: implications for the composition of melts parental to Proterozoic anorthosite. Contrib. Mineral. Petrol. 119, 166–180.
Morimoto, N., 1988. Nomenclature of pyroxenes. Schweiz. Mineral. Petrogr. Mitt. 68, 95–111.
Morse, S.A., 1981. Kiglapait geochemistry IV: The major elements. Geochim. Cosmochim. Acta 45, 461–479.
Münker, C., 1998. Nb/Ta fractionation in a Cambrian arc/back arc system, New Zealand: source constraints and application of refined ICPMS technique. Chem. Geol. 144, 23–45.
Murphy, J.B., Gutierrez-Alonso, G., Nance, R.D., Fernandez-Suarez, J., Keppie, J.D., Quesada, C., Strachan, R. A., Dostal, J., 2006. Origin of the Rheic Ocean: rifting along a Neoproterozoic suture? Geology 34, 325–328.
Nielsen, R.L., Gallahan W.E., Newberger, F., 1992. Experimentally determined mineral-melt partition coefficients for Sc, Y and REE for olivine, orthopyroxene, pigeonite, magnetite and ilmenite. Contrib. Mineral. Petrol. 110, 488–499.
Pearce, J.A., Kempton, P.D., Nowell, G.M., Noble, S.R., 1999. Hf–Nd element and isotope perspective on the nature and provenance of mantle and subduction components in western Pacific arc-basin systems. J. Petrol. 40, 1579–1611.
Pearce, J.A., Norry, M.J., 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contrib. Mineral. Petrol. 69, 33–47.
Peate, D.W., Baker, J.A., Blichert-Toft, J., Hilton, D.R., Storey, M., Kent, A.J.R., Brooks, C.K., Hansen, H., Pedersen, A.K., Duncan, R.A., 2003. The Prinsen af Wales Bjerge formation lavas, east Greenland: the transition from tholeiitic to alkalic magmatism during Palaeogene continental break-up. J. Petrol. 44, 279–304.
Pertermann, M., Hirschmann, M.M., 2003. Anhydrous partial melting experiments on MORB-like eclogite: Phase relations, phase compositions and mineral–melt partitioning of major elements at 2–3 GPa. J. Petrol. 44, 2173–2201.
Pik, R., Deniel, C., Coulon, C., Yirgu, G., Marty, B., 1999. Isotopic and trace element signatures of Ethiopian flood basalts: evidence for plume-lithosphere interactions. Geochim. Cosmochim. Acta 63, 2263–2279.
Plank, T., Langmuir, C.H., 1993. Tracing trace-elements from sediment input to volcanic output at subduction zones. Nature 362, 739–743.
Powell, R., Holland, T.J.B., 1994. Optimal geothermometry and geobarometry. Am. Mineral. 79, 120–133.
Putirka, K., 1999. Clinopyroxene + liquid equilibrium to 100 kbar and 2450 °K. Contrib. Mineral. Petrol. 135, 151–163.
Putirka, K., Mikaelian, H., Ryerson, F., Shaw, H., 2003. New clinopyroxene-liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake River Plain, Idaho. Am. Mineral. 88, 1542–1554.
Ravna, E.J.K., 2000. The garnet–clinopyroxene Fe2+–Mg geothermometer: an update calibration. J. Metamorph. Geol. 18, 211–219.
Ravna, E.J.K., Terry, M.P., 2004. Geothermobarometry of UHP and HP eclogites and schists – an evaluation of equilibria among garnet–clinopyroxene–kyanite– phengite–coesite/quartz. J. Metamorph. Geol. 22, 579–592.
Rhodes, J.M., Vollinger, M.J., 2004. Composition of basaltic lavas sampled by phase-2 of the Hawaii Scientific Drilling Project: Geochemical stratigraphy and magma types. Geochem. Geophys. Geosyst. 5, Q03G13, doi:10.1029/ 2002GC000434.
Rowley, D.B., Xue, F., Tucker, R.D., Peng, Z.X., Baker, J., Davis, A., 1997. Ages of ultrahigh pressure metamorphism and protolith orthogneisses from the Central Dabie Shan: U/Pb zircon geochronology. Earth Planet. Sci. Lett. 151, 191–203.
Rubatto, D., Hermann, J., 2003. Zircon formation during fluid circulation in eclogites (Monviso, Western Alps): Implications for Zr and Hf budget in subduction zones. Geochim. Cosmochim. Acta 67, 2173–2187.
Rudnick, R.L., Barth, M., Horn, I., McDonough, W.F., 2000, Rutile-bearing refractory eclogites: Missing link between continents and depleted mantle. Science 287, 278–281.
Salters, V.J.M., Hart, S.R., 1991. The mantle sources of ocean ridges, islands and arcs: the Hf-isotope connection. Earth Planet. Sci. Lett. 104, 364–380.
Sano, T., Fujii, T., Deshmukh, S.S., Fukuoka, T., Aramaki, S., 2001. Differentiation process of Deccan Trap basalts: contribution from geochemistry and experimental petrology. J. Petrol. 42, 2175–2195.
Sassi, R., Mazzoli, C., Miller, C., Konzett, J., 2004. Geochemistry and metamorphic evolution of the Pohorje Mountain eclogites from the easternmost Austroalpine basement of the Eastern Alps (Northern Slovenia). Lithos 78, 235–261.
Schärer, U., Girardeau, J., Cornen, G., Boillot, G., 2000. 138-121 Ma asthenospheric magmatism prior to continental break-up in the North Atlantic and geodynamic implications. Earth Planet. Sci. Lett. 181, 555–572.
Sheng, Y.-M., Xia, Q.-K., Dallai, L., Yang, X.-Z., Hao, Y.-T., 2007. H2O contents and D/H ratios of nominally anhydrous minerals from ultrahigh-pressure eclogites of the Dabie orogen, eastern China. Geochim. Cosmochim. Acta 71, 2079–2103.
Shirey, S.B., Klewin, K.W., Berg, J.H., Carlson, R.W., 1994. Temporal changes in the sources of flood basalts: isotopic and trace element evidence from the 1100 Ma old Keweenawan Mamainse Point formation, Ontario, Canada. Geochim. Cosmochim. Acta 58, 4475–4490.
Sisson, T.W., Grove, T.L., Coleman, D.S., 1996. Hornblende gabbro sill complex at Onion Valley, California, and a mixing origin for the Sierra Nevada batholith. Contrib. Mineral. Petrol. 126, 81–108.
Skjerlie, K.P., Douce, A.E.P., 2002. The Fluid-absent partial melting of a zoisite-bearing quartz eclogite from 1.0 to 3.2 GPa; Implications for melting in thickened continental crust and for subduction-zone processes. J. Petrol. 43, 291–314.
Sobolev, N.V., Shatsky, V.S., 1990. Diamond inclusions in garnets from metamorphic rocks. Nature 343, 742–746.
Spandler, C., Hermann, J., Arculus, R., Mavrogenes, J., 2003. Redistribution of trace elements during prograde metamorphism from lawsonite blueschist to eclogite facies: implications for deep subduction-zone processes. Contrib. Mineral. Petrol. 146, 205–222.
Spandler, C., Hermann, J., Arculus, R., Mavrogenes, J., 2004. Geochemical heterogeneity and element mobility in deeply subducted oceanic crust: insights from high-pressure mafic rocks from New Caledonia. Chem. Geol. 206, 21–42.
Spandler, C., Hermann, J., 2006. High-pressure veins in eclogite from New Caledonia and their significance for fluid migration in subduction zones. Lithos 89, 135–153.
Su, S.-G., Liou, J.-G., You, Z.-D., Liang, F.-H., Zhang, Z.-M., 2005. Petrologic study of ultrahigh-pressure metamorphic cores from 100 to 2000 m depth in the main hole of the Chinese Continental Scientific Drilling project, eastern China. Int. Geol. Rev. 47, 1144–1159.
Sun, S.-S., McDonough, W.F., 1989. Chemical and isotope systematics of oceanic basalts: implications for mantle composition and processes. In: Magmatism in the Oceanic Basins. (eds. Saunders, A.D., Norry, M.J.), Geological Society, London. pp. 313–345.
Tommasi, A., Vauchez, A., 2001. Continental rifting parallel to ancient collisional belts: an effect of the mechanical anisotropy of the lithospheric mantle. Earth Planet. Sci. Lett. 185, 199–210.
Thompson, P.M.E., Kempton, P.D., White, R.V., Saunders, A.D., Kerr, A.C., Tarney, J., Pringle, M.S., 2004. Elemental, Hf–Nd isotopic and geochronological constraints on an island arc sequence associated with the Cretaceous Caribbean plateau: Bonaire, Dutch Antilles. Lithos 74, 91–116.
Thompson, R.N., Riches, A.J.V., Antoshechkina, P.M., Pearson, D.G., Nowell, G.M., Ottley, C.J., Dickin, A.P., Hards, V.L., Nguno, A.-K., Niku-Paavola, V., 2007. Origin of CFB magmatism: multi-tiered intracrustal picrite–rhyolite magmatic plumbing at Spitzkoppe, Western Namibia, during early Cretaceous Etendeka magmatism. J. Petrol. 48, 1119–1154.
Toplis, M.J., Carroll, M.R., 1995. An experimental study of the influence of oxygen fugacity on Fe-Ti oxide stability, phase relations, and mineral-melt equilibria in ferro-basaltic systems. J. Petrol. 36, 1137–1170.
Tropper, P., Manning, C.E., 2005. Very low solubility of rutile in H2O at high pressure and temperature, and its implications for Ti mobility in subduction zones. Am. Mineral. 90, 502–505.
Turner, S.P., 1996. Petrogenesis of the late-Delamerian gabbroic complex at Black Hill, South Australia: implications for convective thinning of the lithospheric mantle. Mineral. Petrol. 56, 51–89.
Upton, B.G.J., Rämö, O.T., Heaman, L.M., Blichert-Toft, J., Kalsbeek, F., Barry, T.L., Jepsen, H.F., 2005. The Mesoproterozoic Zig-Zag Dal basalts and associated intrusions of eastern north Greenland: mantle plume-lithosphere interaction. Contrib. Mineral. Petrol. 149, 40–56.
Van Baalen, M.R., 1993. Titanium mobility in metamorphic systems: a review. Chem. Geol. 110, 233–249.
Vauchez, A., Barruol, G., Tommasi, A., 1997. Why do continents break-up parallel to ancient orogenic belts? Terra Nova 9, 62–66.
Vervoort, J.D., Patchett, P.J., Toft-Blichert, J., Albarède, F., 1999. Relationships between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system. Earth Planet. Sci. Lett. 168, 79–99.
Vignaroli, G., Rossetti, F., Bouybaouene, M., Massonne, H.-J., Theye, T., Faccenna, C., Funiciello, R., 2005. A counter-colockwise P-T path for the Voltri Massif eclogites (Ligurian Alps, Italy). J. Metamorph. Geol. 23, 533–555.
Wang, C.Y., Zhou, M.-F., Qi, L., 2007. Permian flood basalts and mafic intrusions in the Jinping (SW China)–Song Da (northern Vietnam) district: Mantle sources, crustal contamination and sulfide segregation. Chem. Geol. 243, 317–343.
Wayte, G.J., Worden, R.H., Rubie, D.C., Droop, G.T.R., 1989. A TEM study of disequilibrium plagioclase breakdown at high pressure: the role of infiltrating fluid. Contrib. Mineral. Petrol. 101, 426–437.
Weiblen, P.W., Morey, G.B., 1980. A summary of the stratigraphy, petrology, and structure of the Duluth complex. Am. J. Sci. 280, 88–133.
Weis, D., Kieffer, B., Hanano, D., Silva, I.N., Barling, J., Pretorius, W., 2007. Hf isotope compositions of U.S. Geological Survey reference materials. Geochem. Geophys. Geosyst. 8, Q06006, doi:10.1029/ 2006GC001473.
White, W.M., Patchett, P.J., 1984. Hf–Nd–Sr and incompatible-element abundances in island arcs: implications for magma origins and crust-mantle evolution. Earth Planet. Sci. Lett. 67, 167–185.
Williams, I.S., Buick, I.S., Cartwright, I., 1996. An extended episode of early Mesoproterozoic fluid flow in the Reynolds Range, central Australia. J. Metamorph. Geol. 14, 29–47.
Winter, J.D., 2001. An introduction to igneous and metamorphic petrology. Prentice-Hall Inc. p. 231.
Wilson, S.A., 1997, Data compilation for USGS reference material BHVO-2, Hawaiian Basalt, U.S. Geological Survey Open-File Report.
Woodhead, J.D., Hergt, J.M., Davidson, J.P., Eggins, S.M., 2001. Hafnium isotope evidence for ‘conservative’ element mobility during subduction zone processes. Earth Planet. Sci. Lett. 192, 331–346.
Xu, Y., Chung, S.-L., Jahn, B.-M., Wu, G., 2001. Petrologic and geochemical constrains on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China. Lithos 58, 145–168.
Yang, H.-J., Frey, F.A., Garcia, M.O., Clague, D.A., 1994. Submarine lavas from Mauna Kea volcano, Hawaii: Implications for Hawaiian shield stage processes. J. Geophys. Res. 99, 15577–15594.
Yang, T.-Y. F., Yang C.-C., Lee, C.-Y., Chung, S.-L., Chen, C.-H., 1996a. NTUG rock standards for geochemical analysis. J. Geol. Soc. China 39, 307–323.
Yang, H.-J., Kinzler, R.J., Grove, T.L., 1996b. Experiments and models of anhydrous, basaltic olivine-plagioclase-augite saturated melts from 0.001 to 10 kbar. Contrib. Mineral. Petrol. 124, 1–18.
Yang, H.-J., Frey, F.A., Weis, D., Giret, A., Pyle, D., Michon, G., 1998. Petrogenesis of the flood basalts forming the Northern Kerguelen archipelago: Implications for the Kerguelen plume. J. Petrol. 39, 711–748.
Yang, H.-J., Frey, F.A., Clague, D.A., Garcia, M.O., 1999. Mineral chemistry of submarine lavas from Hilo Ridge, Hawaii: Implications for magmatic processes within Hawaiian rift zones. Contrib. Mineral. Petrol. 135, 355–372.
Ye, K., Cong, B., Ye, D., 2000. The possible subduction of continental material to depths greater than 200 km. Nature 407, 734–736.
Yui, T.-F., Rumble, D., Lo, C.-H., 1995. Unusually low δ18O ultra-high-pressure metamorphic rocks from the Sulu Terrane, eastern China. Geochim. Cosmochim. Acta 59, 2859–2864.
Yui, T.-F., Rumble, D., Chen, C.-H., Lo, C.-H., 1997. Stable isotope characteristics of eclogites from the ultra-high-pressure metamorphic terrain, east-central China. Chem. Geol. 137, 135–147.
Zack, T., Kronz, A., Foley, S.F., Rivers, T., 2002. Trace element abundances in rutiles from eclogites and associated garnet mica schists. Chem. Geol. 184, 97–122.
Zhang, J.-J., Zheng, Y.-F., Zhao, Z.-F., 2009. Geochemical evidence for interaction between oceanic crust and lithospheric mantle in the origin of Cenozoic continental basalts in east-central China. Lithos 110, 305–326.
Zhang, R.-Y., Hirajima, T., Banno, S., Cong, B., Liou, J.-G., 1995. Petrology of ultrahigh-pressure rocks from the southern Su-Lu region, eastern China. J. Metamorph. Geol. 13, 659–675.
Zhang, Z.-M., Xu, Z.-Q., Liu, F.-L., You, Z.-D., Shen, Q., Yang, J.-S., Li, T.-F., Chen, S.-Z., 2004. Geochemistry of eclogites from the main hole (100~2050m) of the Chinese Continental Scientific Drilling Project. Acta Petrol. Sin. 20, 27-42 (in Chinese with English abstract).
Zhang, Z.-M., Xiao, Y.-L., Liu, F.-L., Liou, J.-G., Hoefs, J., 2005. Petrogenesis of UHP metamorphic rocks from Qinglongshan, southern Sulu, east-central China. Lithos 81, 189–207.
Zhang, Z.-M., Xiao, Y.-L., Xu, Z.-Q., Hoefs, J., Yang, J.-S., Liu, F.-L., Liou, J.-G., Simon, K., 2006. UHP metamorphic rocks from the Chinese continental scientific drilling project: I. Petrology and geochemistry of the main hole (0–2050 m). Contrib. Mineral. Petrol. 152, 421–441.
Zhang, Z.-M., Shen, K., Sun, W.-D., Liu, Y.-S., Liou, J.-G., Shi, C., Wang, J.-L., 2008. Fluids in deeply subducted continental crust: Petrology, mineral chemistry and fluid inclusion of UHP metamorphic veins from the Sulu orogen, eastern China. Geochim. Cosmochim. Acta 72, 3200–3228.
Zheng, Y.-F., Fu, B., Gong, B., Li, L., 2003. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: Implications for geodynamics and fluid regime. Earth-Sci. Rev. 62, 105–161.
Zheng, Y.-F., Wu, Y.-B., Chen, F.-K., Gong, B., Li, L., Zhao, Z.-F., 2004. Zircon U–Pb and oxygen isotope evidence for a large-scale 18O depletion event in igneous rocks during the Neoproterozoic. Geochim. Cosmochim. Acta 68, 4145–4165.
Zheng, Y.-F., Zhao, Z.-F., Wu, Y.-B., Zhang., S.-B., Liu, X.-M., Wu, F.-Y., 2006. Zircon U–Pb age, Hf, and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogen. Chem. Geol. 231, 135–15.
Zhou, M.-F., Kennedy, A.K., Sun, M., Malaps, J., Lessher, C.M., 2002. Neoproterozoic arc related mafic intrusions along the Northern margin of South China: Implications for the accretion of Rodinia. J. Geol. 110, 611–618.
Zhou, M.-F., Ma, Y., Yan, D.-P., Xia, X., Zhao, J.-H., Sun, M., 2006. The Yanbian terrane (southern Sichuan province, SW China): A Neoproterozoic arc assemblage in the western margin of the Yangtze block. Precam. Res. 144, 19–38.
Zhao, Z.-F., Zheng, Y.-F., Chen, R.-X., Xia, Q.-X., Wu, Y.-B., 2007. Element mobility in mafic and felsic ultrahigh-pressure metamorphic rocks during continental collision. Geochim. Cosmochim. Acta 71, 2299–2325.