| 研究生: |
王祐謙 Wang, You-Chain |
|---|---|
| 論文名稱: |
甲烷/氨氣混合氣之預混對沖流火焰數值分析 Numerical Study of Methane and Ammonia in Symmetric Premixed Counterflow Flames |
| 指導教授: |
吳志勇
WU, CHIH-YUNG |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 氨氣燃燒 、甲烷/氨氣預混燃料 、對沖火焰 、氮氧化物排放 |
| 外文關鍵詞: | ammonia combustion,methane-ammonia premixed counterflow flame, NOx emissions |
| 相關次數: | 點閱:17 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對甲烷與氨氣混合燃料於對稱預混對沖流火焰中之燃燒行為進行數值模擬,透過數值模擬分析比對文獻數據驗證模擬數據可信度及完整性,探討不同混合比例與當量比對燃燒效率與污染物生成影響,由於氨氣具無碳特性,然而燃燒活性低且易產生NOx,因此本研究選用CHEMKIN-PRO軟體,模擬CH₄/NH₃比例自0%至100%、當量比=0.8、1.0、1.2之燃燒情況,結果模擬顯示,當CH₄/NH₃=70/30且=1.0時,可獲得最高火焰溫度(約2150K)、最完整的燃燒反應與最低NO生成量,為最佳操作條件,本研究亦對自由基分布、熱釋放率、反應路徑與NO生成機制進行分析,相關研究結果可作為未來發展以氨氣為替代燃料之低污染、高效率燃燒系統設計之參考,透過本研究建立之數值模擬分析流程與機制探討,未來可進一步應用於燃燒器優化設計、火焰穩定技術開發及NOx排放控制策略研擬,對於提升氨燃料應用可行性及推動潔淨能源技術具有實質助益。
This study numerically investigates the combustion behavior of methane–ammonia blended fuels in symmetric premixed counterflow flames. Numerical simulations were conducted and validated by comparing with literature data to ensure the reliability and integrity of the results. The effects of different blending ratios and equivalence ratios on combustion efficiency and pollutant formation were examined. Since ammonia is a carbon-free fuel but exhibits low combustion reactivity and tends to generate NOx, CHEMKIN-PRO software was employed to simulate combustion conditions with CH₄/NH₃ ratios ranging from 0% to 100% and equivalence ratios of 0.8, 1.0, and 1.2. The simulation results indicate that the optimal operating condition occurs at CH₄/NH₃ = 70/30 with an equivalence ratio of 1.0, yielding the highest flame temperature (approximately 2150 K), the most complete combustion reaction, and the lowest NO formation. Furthermore, this study analyzed radical distributions, heat release rates, reaction pathways, and NO formation mechanisms. The findings provide valuable insights for developing low-pollution and high-efficiency combustion systems utilizing ammonia as an alternative fuel. The numerical modeling approach and mechanism analysis established in this research can be further applied to combustor optimization, flame stabilization techniques, and NOx emission control strategies, contributing to the feasibility of ammonia fuel applications and advancing clean energy technologies.
[1] Greenhouse Gas Emissions. (2010). Greenhouse Gas Emissions. Retrieved DEC 5 from https://www.epa.gov/ghgemissions/global-greenhouse-gas-overview
[2] Climate change: Emissions edge up despite drop in coal. (2019). BBC. Retrieved DEC 5 from https://www.bbc.com/news/science-environment-50648495
[3] Bomelburg, H. J. (1982). Use of ammonia in energy‐related applications. Plant/Operations Progress, 1(3), 175-180.
[4] Brandhorst, H., Tatarchuk, B., Cahela, D., Baltazar-Lopez, M., & Barron, T. (2008). Ammonia: it's transformation and effective utilization. 6th international energy conversion engineering conference (IECEC),
[5] Lee, J., Lee, S., & Kwon, O. (2010). Effects of ammonia substitution on hydrogen/air flame propagation and emissions. International journal of hydrogen Energy, 35(20), 11332-11341.
[6] Reiter, A. J., & Kong, S.-C. (2011). Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel. Fuel, 90(1), 87-97.
[7] Um, D., Joo, J., Lee, S., & Kwon, O. (2013). Combustion stability limits and NOx emissions of nonpremixed ammonia-substituted hydrogen–air flames. International journal of hydrogen Energy, 38(34), 14854-14865.
[8] 賈楷捷, & 石心怡. (2018). CH_4/NH_3 與 H_2/NH_3 相向噴流擴散火焰 NO_X 生成計算分析. 燃燒季刊(100), 71-82.
[9] Lee, K.-O., Megaridis, C. M., Zelepouga, S., Saveliev, A. V., Kennedy, L. A., Charon, O., & Ammouri, F. (2000). Soot formation effects of oxygen concentration in the oxidizer stream of laminar coannular nonpremixed methane/air flames. Combustion and Flame, 121(1-2), 323-333.
[10] Friend, D., & Huber, M. (1994). Thermophysical property standard reference data from NIST. International journal of thermophysics, 15, 1279-1288.
[11] Law, C. K. (2010). Combustion physics. Cambridge university press.
[12] Farahani, M. F., Akbari, S., & Hosseinzadeh, K. (2024). Evaluation of thermal radiation and Lewis number effects on oscillatory thermal-diffusive instabilities of counterflow premixed flame fed with moisty biomass particles. Case Studies in Thermal Engineering, 58, 104369.
[13] Sadeghi, S. S., Tabejamaat, S., Ghahremani, A., & Asl, S. N. (2024). A novel Swiss-roll counterflow micro-combustor: Experimental investigation of flame dynamic characteristics by spectroscopy and RGB image processing methods. Energy, 299, 131495.
[14] Kaplan, C. R., & Kailasanath, K. (2001). Flow-field effects on soot formation in normal and inverse methane–air diffusion flames. Combustion and Flame, 124(1-2), 275-294.
[15] Skreiberg, Ø., Kilpinen, P., & Glarborg, P. (2004). Ammonia chemistry below 1400 K under fuel-rich conditions in a flow reactor. Combustion and Flame, 136(4), 501-518.
[16] Miller, J. A., Smooke, M. D., Green, R. M., & Kee, R. J. (1983). Kinetic modeling of the oxidation of ammonia in flames. Combustion Science and Technology, 34(1-6), 149-176.
[17] Vagelopoulos, C., & Egolfopoulos, F. (1994). Laminar flame speeds and extinction strain rates of mixtures of carbon monoxide with hydrogen, methane, and air. Symposium (international) on Combustion,
[18] Lowry, W. B., Serinyel, Z., Krejci, M. C., Curran, H. J., Bourque, G., & Petersen, E. L. (2011). Effect of methane-dimethyl ether fuel blends on flame stability, laminar flame speed, and Markstein length. Proceedings of the Combustion Institute, 33(1), 929-937.
[19] Xiang, L., Chu, H., Ren, F., & Gu, M. (2019). Numerical analysis of the effect of CO2 on combustion characteristics of laminar premixed methane/air flames. Journal of the Energy Institute, 92(5), 1487-1501.
[20] Dirrenberger, P., Le Gall, H., Bounaceur, R., Herbinet, O., Glaude, P. A., Konnov, A., & Battin-Leclerc, F. (2011). Measurements of laminar flame velocity for components of natural gas. Energy & fuels, 25(9), 3875-3884.
[21] He, Y., Wang, Z., Yang, L., Whiddon, R., Li, Z., Zhou, J., & Cen, K. (2012). Investigation of laminar flame speeds of typical syngas using laser based Bunsen method and kinetic simulation. Fuel, 95, 206-213.
[22] Miao, J., Leung, C. W., Huang, Z., Cheung, C. S., Yu, H., & Xie, Y. (2014). Laminar burning velocities, Markstein lengths, and flame thickness of liquefied petroleum gas with hydrogen enrichment. international journal of hydrogen energy, 39(24), 13020-13030.
[23] Duynslaegher, C., Contino, F., Vandooren, J., & Jeanmart, H. (2012). Modeling of ammonia combustion at low pressure. Combustion and Flame, 159(9), 2799-2805.
[24] 柯尹晟. (2020). CH4/NH3相向噴流擴散火焰燃燒與NOx排放分析 長庚大學]. 國立長庚大學機械工程碩士論文.桃園縣. https://hdl.handle.net/11296/7xw7y3
[25] 陳力嘉. (2021). 應用非對稱對沖流火焰於甲烷火焰對氨火焰之數值研究 國立成功大學].國立成功大學航太所碩士論文.台南市. https://hdl.handle.net/11296/xn22bx
[26] 鄭誠. (2019). 微渦輪機罐狀燃燒室應用CH4/NH3混合燃料之燃燒分析 長庚大學]. 國立長庚大學機械工程碩士論文. 桃園縣. https://hdl.handle.net/11296/fsyq47
[27] Choi, S., Lee, S., & Kwon, O. C. (2015). Extinction limits and structure of counterflow nonpremixed hydrogen-doped ammonia/air flames at elevated temperatures. Energy, 85, 503-510.
[28] Hayakawa, A., Goto, T., Mimoto, R., Arakawa, Y., Kudo, T., & Kobayashi, H. (2015). Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures. Fuel, 159, 98-106.
[29] Hussein, N. A., Valera-Medina, A., & Alsaegh, A. S. (2019). Ammonia-hydrogen combustion in a swirl burner with reduction of NOx emissions. Energy Procedia, 158, 2305-2310.
[30] Ku, J., Ahn, Y., Kim, H., Kim, Y., & Kwon, O. (2020). Propagation and emissions of premixed methane-ammonia/air flames. Energy, 201, 117632.
[31] Mendiara, T., & Glarborg, P. (2009). Ammonia chemistry in oxy-fuel combustion of methane. Combustion and Flame, 156(10), 1937-1949.
[32] Okanishi, T., Okura, K., Srifa, A., Muroyama, H., Matsui, T., Kishimoto, M., Saito, M., Iwai, H., Yoshida, H., & Saito, M. (2017). Comparative Study of Ammonia‐fueled Solid Oxide Fuel Cell Systems. Fuel Cells, 17(3), 383-390.
[33] Zelepouga, S. A., Saveliev, A. V., Kennedy, L. A., & Fridman, A. A. (2000). Relative effect of acetylene and PAHs addition on soot formation in laminar diffusion flames of methane with oxygen and oxygen-enriched air. Combustion and Flame, 122(1-2), 76-89.
[34] Zhang, B., & Ng, H. D. (2015). Explosion behavior of methane–dimethyl ether/air mixtures. Fuel, 157, 56-63.