簡易檢索 / 詳目顯示

研究生: 曾耀毅
Tzeng, Yao-Yi,
論文名稱: 兩段水平獲得序列在致病性大腸桿菌感染的角色
The roles of two horizontally acquired sequences in the infections of pathogenic Escherichia coli
指導教授: 鄧景浩
Teng, Ching-Hao
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2015
畢業學年度: 104
語文別: 中文
論文頁數: 47
中文關鍵詞: 水平基因轉移腸道生長腸道外致病大腸桿菌年齡
外文關鍵詞: horizontal gene transfer, intestinal colonization, ExPEC, age
相關次數: 點閱:115下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   水平基因轉移讓不同的細菌之間可以互相交流獲得新基因,是促進細菌演化的動力來源之一。細菌的基因島與質體一般認為來自於水平轉移,過去發現可能與細菌的致病有關。腸道外致病E. coli CFT073和RS218分別自泌尿道感染患者和新生兒腦膜炎患者中分離,過去文獻指出CFT073擁有一個約16 kb的tkt基因島,RS218則帶有一個約110 kb的質體pRS218,因此在本研究分別探討pRS218和tkt基因島在致病過
    程的角色。
      首先,tkt基因島在膀胱炎相關大腸桿菌的流行率顯著高於糞便分離大腸桿菌,顯示tkt基因島可能跟泌尿道感染有相關。然而在小鼠泌尿道感染實驗中,tkt基因島的存在與否似乎不影響CFT073感染泌尿道的能力。因此,這種流行病學相關的原因有待進一步探討。此外,tkt基因島在由相對年紀較大的宿主分離出的菌株的存在率明顯的比由相對年輕宿主分離株中的比例高。在小鼠腸道試驗中,我們也發現到tkt基因島有助於CFT073在相對年長的老鼠中生存,然而卻不利於在相對年輕的老鼠中的存活。這結果顯示tkt基因島影響致病性大腸桿菌在腸道的存活能力,但是
    其影響結果會因宿主年紀而不同。
      接著在本研究的pRS218部分,小鼠的菌血症實驗中,pRS218的存在與否對於RS218感染血液、脾臟或肝臟組織中的能力沒有明顯的影響。然而在小鼠腸道生存能力上,pRS218有利於其自然的宿主RS218在腸道中生長,但其在共生性大腸桿菌MG1655的背景之下,反而有害在腸道的生存能力。因此,pRS218會影響大腸桿菌
    在腸道中的生存能力,但其影響結果會因其細菌宿主的不同而有異。
      本研究結果顯示tkt基因島與pRS218會影響腸道外致病大腸桿菌在腸道生長的能力,但是這些影響結果會受到細菌背景或動物宿主年紀的影響。因為宿主腸道被認為是腸道外致病性大腸桿菌的傳染窩 (reservoir),這些致病菌在腸道中的生存能力也會影響其致病力。因此,腸道外致病大腸桿菌經水平轉移獲得的DNA序列對於這
    些致病菌株在腸道生存的角色值得注意。

    Genomic islands and plasmids, which can be horizontally transferred between bacteria, are often involved in the pathogenesis of extraintestinal pathogenic E. coli (ExPEC). The ExPEC strains CFT073 and RS218, which are associated with urinary tracts infections (UTIs) and neonatal meningitis, contain a tkt genomic island and a plasmid pRS218, respectively.
    Our epidemiological analysis showed that the tkt island was association with UTIs. However, our mouse model experiments showed that the island didn't play a significant role in UTIs. In addition, the island facilitated the intestinal survival of CFT073 in relatively elder mice, but hindered the survival of this strain in the relatively younger animals. This suggests that the contribution of the tkt island to the intestinal survival of ExPEC is host age-dependent.
    pRS218 didn't affect the ability of ExPEC to survive in the mouse bloodstream, spleen and liver. The pRS218 in RS218 facilitated the bacterial survival in the intestine, while in MG1655 it hindered the intestinal survival, suggesting that the contribution of pRS218 in intestinal survival is strain-dependent.
    The presence of tkt island and pRS218 affected the intestinal survival ability of ExPEC. However, the effects are E. coli host age-dependent and strain-dependent. Given that the intestine is considered to be the reservoir of ExPEC, the ability of ExPEC survival in the intestine may contribute their ability to cause infection. Therefore, the roles of the horizontally acquired DNA sequences in the intestinal survival of ExPEC are worth further investigation.

    中文摘要 I Extended Abstract III 誌謝 VI 目錄 VII 表目錄 IX 圖目錄 IX 縮寫表 X 第一章 緒論 1 第一節 腸道微生物叢 (Intestinal microbiota) 1 1.1 腸道微生物叢 1 1.2 腸道微生物叢的組成 1 1.3 影響腸道微生物叢組成的因子 1 1.4 傳染窩 (Reservoir) 2 第二節 大腸桿菌 (Escherichia coli, E. coli) 3 2.1 大腸桿菌 3 2.2 共生性大腸桿菌 (Commensal E. coli) 3 2.3 致病性大腸桿菌 (Pathogenic E. coli) 3 第三節 常見ExPEC感染疾病 4 3.1 泌尿道感染 (Urinary tract infection, UTI) 4 3.2 新生兒腦膜炎 (Neonatal meningitis) 4 3.3 菌血症 (Bacteremia) 5 第四節 水平基因轉移 (Horizontal gene transfer) 5 4.1 水平基因轉移 5 4.2 基因島 (Genomic island) 5 4.3 質體 (Plasmid) 6 第五節 實驗目的 7 第二章 材料與方法 9 第一節 大腸桿菌來源、培養與保存 9 第二節 聚合酶鏈鎖反應 (Polymerase chain reaction, PCR) 9 2.1 PCR反應溶液製備 9 2.2 模板來源 10 第三節 實驗菌株建構 10 3.1 勝任細胞製備 10 3.2 基因突變 11 3.3 接合作用 (Conjugation) 11 第四節 洋菜膠電泳 (Agarose gel electrophoresis) 12 第五節 移除RS218之質體pRS218 12 第六節 生長曲線 13 第七節 動物實驗 14 6.1 腸道競爭試驗 14 6.2 泌尿道競爭感染 15 6.3 菌血症競爭感染 16 第八節 統計分析 16 第四章 結果 17 第一節 tkt基因島流行病學分析 17 第二節 tkt基因島與泌尿致病的相關性 18 第三節 tkt基因島與腸道生存的相關性 18 第四節 pRS218對RS218和MG155生長的影響 19 第五節 pRS218與小鼠菌血症的相關性 20 第六節 pRS218對RS218在腸道生長影響 21 第七節 pRS218對MG1655在腸道生長影響 21 第四章 討論 22 第五章 參考文獻 27 Tables 32 Figures 40 附錄 46

    1. Tenaillon, O., Skurnik, D., Picard, B. & Denamur, E. The population genetics of commensal Escherichia coli. Nat Rev Microbiol 8, 207-217, 2010.
    2. Maltby, R., Leatham-Jensen, M. P., Gibson, T., Cohen, P. S. & Conway, T. Nutritional basis for colonization resistance by human commensal Escherichia coli strains HS and Nissle 1917 against E. coli O157:H7 in the mouse intestine. PLoS One 8, e53957, 2013.
    3. Hudault, S., Guignot, J. & Servin, A. L. Escherichia coli strains colonising the gastrointestinal tract protect germfree mice against Salmonella typhimurium infection. Gut 49, 47-55, 2001.
    4. Bentley, R. & Meganathan, R. Biosynthesis of vitamin K (menaquinone) in bacteria. Microbiol Rev 46, 241-280, 1982.
    5. Wiles, T. J., Kulesus, R. R. & Mulvey, M. A. Origins and virulence mechanisms of uropathogenic Escherichia coli. Exp Mol Pathol 85, 11-19, 2008.
    6. Kaper, J. B., Nataro, J. P. & Mobley, H. L. Pathogenic Escherichia coli. Nat Rev Microbiol 2, 123-140, 2004.
    7. Gronbach, K. et al. Safety of probiotic Escherichia coli strain Nissle 1917 depends on intestinal microbiota and adaptive immunity of the host. Infect Immun 78, 3036-3046, 2010.
    8. Alteri, C. J. & Mobley, H. L. Escherichia coli physiology and metabolism dictates adaptation to diverse host microenvironments. Curr Opin Microbiol 15, 3-9, 2012.
    9. Ewers, C. et al. Avian pathogenic, uropathogenic, and newborn meningitis-causing Escherichia coli: how closely related are they? Int J Med Microbiol 297, 163-176, 2007.
    10. Schouler, C., Koffmann, F., Amory, C., Leroy-Setrin, S. & Moulin-Schouleur, M. Genomic subtraction for the identification of putative new virulence factors of an avian pathogenic Escherichia coli strain of O2 serogroup. Microbiology 150, 2973-2984, 2004.
    11. Foxman, B. Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Am J Med 113 Suppl 1A, 5S-13S, 2002.
    12. Ronald, A. R. et al. Urinary tract infection in adults: research priorities and strategies. Int J Antimicrob Agents 17, 343-348, 2001.
    13. Garcia, E. C., Brumbaugh, A. R. & Mobley, H. L. Redundancy and specificity of Escherichia coli iron acquisition systems during urinary tract infection. Infect Immun 79, 1225-1235, 2011.
    14. Le Bouguenec, C. & Schouler, C. Sugar metabolism, an additional virulence factor in enterobacteria. Int J Med Microbiol 301, 1-6, 2011.
    15. Oelschlaeger, T. A., Dobrindt, U. & Hacker, J. Virulence factors of uropathogens. Curr Opin Urol 12, 33-38, 2002.
    16. Lawn, J. E., Cousens, S., Zupan, J. & Lancet Neonatal Survival Steering, T. 4 million neonatal deaths: when? Where? Why? Lancet 365, 891-900, 2005.
    17. Wijetunge, D. S. et al. Complete nucleotide sequence of pRS218, a large virulence plasmid, that augments pathogenic potential of meningitis-associated Escherichia coli strain RS218. BMC Microbiol 14, 203, 2014.
    18. Xie, Y. et al. Identification and characterization of Escherichia coli RS218-derived islands in the pathogenesis of E. coli meningitis. J Infect Dis 194, 358-364, 2006.
    19. Ng, K. M. et al. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 502, 96-99, 2013.
    20. Zoetendal, E. G., Akkermans, A. D. & De Vos, W. M. Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol 64, 3854-3859, 1998.
    21. Lee, S. M. et al. Bacterial colonization factors control specificity and stability of the gut microbiota. Nature 501, 426-429, 2013.
    22. Meador, J. P., Caldwell, M. E., Cohen, P. S. & Conway, T. Escherichia coli pathotypes occupy distinct niches in the mouse intestine. Infect Immun 82, 1931-1938, 2014.
    23. Kau, A. L., Ahern, P. P., Griffin, N. W., Goodman, A. L. & Gordon, J. I. Human nutrition, the gut microbiome and the immune system. Nature 474, 327-336, 2011.
    24. Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480-484, 2009.
    25. Kallus, S. J. & Brandt, L. J. The intestinal microbiota and obesity. J Clin Gastroenterol 46, 16-24, 2012.
    26. De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 107, 14691-14696, 2010.
    27. Keeney, K. M., Yurist-Doutsch, S., Arrieta, M. C. & Finlay, B. B. Effects of antibiotics on human microbiota and subsequent disease. Annu Rev Microbiol 68, 217-235, 2014.
    28. Human Microbiome Project, C. Structure, function and diversity of the healthy human microbiome. Nature 486, 207-214, 2012.
    29. Harmsen, H. J., Raangs, G. C., He, T., Degener, J. E. & Welling, G. W. Extensive set of 16S rRNA-based probes for detection of bacteria in human feces. Appl Environ Microbiol 68, 2982-2990, 2002.
    30. Fabich, A. J. et al. Comparison of carbon nutrition for pathogenic and commensal Escherichia coli strains in the mouse intestine. Infect Immun 76, 1143-1152, 2008.
    31. Freter, R., Brickner, H., Botney, M., Cleven, D. & Aranki, A. Mechanisms that control bacterial populations in continuous-flow culture models of mouse large intestinal flora. Infect Immun 39, 676-685, 1983.
    32. Chang, D. E. et al. Carbon nutrition of Escherichia coli in the mouse intestine. Proc Natl Acad Sci U S A 101, 7427-7432, 2004.
    33. Lipsky, B. A. Urinary tract infections in men. Epidemiology, pathophysiology, diagnosis, and treatment. Ann Intern Med 110, 138-150, 1989.
    34. Gay, P., Le Coq, D., Steinmetz, M., Berkelman, T. & Kado, C. I. Positive selection procedure for entrapment of insertion sequence elements in gram-negative bacteria. J Bacteriol 164, 918-921, 1985.
    35. Diard, M. et al. Pathogenicity-associated islands in extraintestinal pathogenic Escherichia coli are fitness elements involved in intestinal colonization. J Bacteriol 192, 4885-4893, 2010.
    36. Qin, X. et al. Comparison of adhesin genes and antimicrobial susceptibilities between uropathogenic and intestinal commensal Escherichia coli strains. PLoS One 8, e61169, 2013.
    37. Croxen, M. A. & Finlay, B. B. Molecular mechanisms of Escherichia coli pathogenicity. Nat Rev Microbiol 8, 26-38, 2010.
    38. Nordmann, P., Naas, T. & Poirel, L. Global spread of Carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis 17, 1791-1798, 2011.
    39. Rode, C. K., Melkerson-Watson, L. J., Johnson, A. T. & Bloch, C. A. Type-specific contributions to chromosome size differences in Escherichia coli. Infect Immun 67, 230-236, 1999.
    40. Bryant, W. A., Krabben, P., Baganz, F., Zhou, Y. & Ward, J. M. The Analysis of Multiple Genome Comparisons in Genus Escherichia and Its Application to the Discovery of Uncharacterised Metabolic Genes in Uropathogenic Escherichia coli CFT073. Comp Funct Genomics, 782924, 2009.
    41. Johnson, T. J. et al. Plasmid replicon typing of commensal and pathogenic Escherichia coli isolates. Appl Environ Microbiol 73, 1976-1983, 2007.
    42. Smets, B. F. & Barkay, T. Horizontal gene transfer: perspectives at a crossroads of scientific disciplines. Nat Rev Microbiol 3, 675-678, 2005.
    43. Cusumano, C. K., Hung, C. S., Chen, S. L. & Hultgren, S. J. Virulence plasmid harbored by uropathogenic Escherichia coli functions in acute stages of pathogenesis. Infect Immun 78, 1457-1467, 2010.
    44. Dobrindt, U. et al. Analysis of genome plasticity in pathogenic and commensal Escherichia coli isolates by use of DNA arrays. J Bacteriol 185, 1831-1840, 2003.
    45. Burrus, V., Pavlovic, G., Decaris, B. & Guedon, G. Conjugative transposons: the tip of the iceberg. Mol Microbiol 46, 601-610, 2002.
    46. Hentschel, U. & Hacker, J. Pathogenicity islands: the tip of the iceberg. Microbes Infect 3, 545-548, 2001.
    47. Sprenger, G. A., Schorken, U., Sprenger, G. & Sahm, H. Transketolase A of Escherichia coli K12. Purification and properties of the enzyme from recombinant strains. Eur J Biochem 230, 525-532, 1995.
    48. Matson, S. W., Sampson, J. K. & Byrd, D. R. F plasmid conjugative DNA transfer: the TraI helicase activity is essential for DNA strand transfer. J Biol Chem 276, 2372-2379, 2001.
    49. Lloyd, A. L., Henderson, T. A., Vigil, P. D. & Mobley, H. L. Genomic islands of uropathogenic Escherichia coli contribute to virulence. J Bacteriol 191, 3469-3481, 2009.
    50. Li, G. et al. tkt1, located on a novel pathogenicity island, is prevalent in avian and human extraintestinal pathogenic Escherichia coli. BMC Microbiol 12, 51, 2012.
    51. Pluschke, G., Mercer, A., Kusecek, B., Pohl, A. & Achtman, M. Induction of bacteremia in newborn rats by Escherichia coli K1 is correlated with only certain O (lipopolysaccharide) antigen types. Infect Immun 39, 599-608, 1983.
    52. Glode, M. P., Sutton, A., Moxon, E. R. & Robbins, J. B. Pathogenesis of neonatal Escherichia coli meningitis: induction of bacteremia and meningitis in infant rats fed E. coli K1. Infect Immun 16, 75-80, 1977.
    53. Brzuszkiewicz, E. et al. How to become a uropathogen: comparative genomic analysis of extraintestinal pathogenic Escherichia coli strains. Proc Natl Acad Sci U S A 103, 12879-12884, 2006.
    54. Markert, B., Stolzenberger, J., Brautaset, T. & Wendisch, V. F. Characterization of two transketolases encoded on the chromosome and the plasmid pBM19 of the facultative ribulose monophosphate cycle methylotroph Bacillus methanolicus. BMC Microbiol 14, 7, 2014.
    55. Li, G., Laturnus, C., Ewers, C. & Wieler, L. H. Identification of genes required for avian Escherichia coli septicemia by signature-tagged mutagenesis. Infect Immun 73, 2818-2827, 2005.
    56. Tomás, J. M. & Kay, W. W. A simple and rapid method for the elimination of R plasmids from enteric bacteria. Curr Microbiol 11, 155-157, 1984.
    57. Zaman, M., Pasha, M. & Akhter, M. Plasmid curing of Escherichia coli cells with ethidium bromide, sodium dodecyl sulfate and acridine orange. Bangladesh Journal of Microbiology 27, 28-31, 2010.
    58. Bonacorsi, S. & Bingen, E. Molecular epidemiology of Escherichia coli causing neonatal meningitis. Int J Med Microbiol 295, 373-381, 2005.
    59. Johnson, D. E. et al. Comparison of Escherichia coli strains recovered from human cystitis and pyelonephritis infections in transurethrally challenged mice. Infect Immun 66, 3059-3065, 1998.
    60. Mulvey, M. A., Schilling, J. D. & Hultgren, S. J. Establishment of a persistent Escherichia coli reservoir during the acute phase of a bladder infection. Infect Immun 69, 4572-4579, 2001.
    61. 李馨. 大腸桿菌的可能醣類代謝基因之流行病學分析. 成功大學分子醫學研究所學位論文, 1-60, 2012.
    62. Mao, B. H. et al. Identification of Escherichia coli genes associated with urinary tract infections. J Clin Microbiol 50, 449-456, 2012.
    63. Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97, 6640-6645, 2000.
    64. Smith, M. A. & Bidochka, M. J. Bacterial fitness and plasmid loss: the importance of culture conditions and plasmid size. Can J Microbiol 44, 351-355, 1998.
    65. Herias, M. V., Midtvedt, T., Hanson, L. A. & Wold, A. E. Role of Escherichia coli P fimbriae in intestinal colonization in gnotobiotic rats. Infect Immun 63, 4781-4789, 1995.
    66. Martinez-Jehanne, V. et al. Role of the vpe carbohydrate permease in Escherichia coli urovirulence and fitness in vivo. Infect Immun 80, 2655-2666, 2012.
    67. Achtman, M. et al. Six widespread bacterial clones among Escherichia coli K1 isolates. Infect Immun 39, 315-335, 1983.
    68. Iida, A., Teshiba, S. & Mizobuchi, K. Identification and characterization of the tktB gene encoding a second transketolase in Escherichia coli K-12. J Bacteriol 175, 5375-5383, 1993.
    69. Herzer, P. J., Inouye, S., Inouye, M. & Whittam, T. S. Phylogenetic distribution of branched RNA-linked multicopy single-stranded DNA among natural isolates of Escherichia coli. J Bacteriol 172, 6175-6181, 1990.
    70. Austad, S. N. Comparative aging and life histories in mammals. Exp Gerontol 32, 23-38, 1997.

    無法下載圖示 校內:2026-12-31公開
    校外:2026-12-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE