簡易檢索 / 詳目顯示

研究生: 林家齊
Lin, Chia-Chi
論文名稱: 色素增感太陽電池光電極之製備: 靜電逐層組裝技術的應用
Fabrication of Photoelectrodes for Dye-Sensitized Solar Cells : Electrostatic Layer-by-Layer Assembly Technique
指導教授: 楊毓民
Yang, Yu-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 88
中文關鍵詞: 靜電逐層組裝光電極色素增感太陽電池
外文關鍵詞: electrostatice layer-by-layer (ELBL) assembly, dye sensitized solar cell (DSSC), photoelectrode
相關次數: 點閱:71下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究成功地利用靜電逐層組裝技術在玻璃基板上製備20個雙層的TiO2奈米晶及聚電解質混成薄膜。由粒徑及界面電位的量測顯示,兩種不同組成的TiO2奈米晶(Alfa Aesar TiO2及Degussa P25)皆可以經由pH值的調控,使其帶不同的電性。此外,由QCM的量測也可進一步證實TiO2奈米晶和具相反電性的聚電解質進行交替逐層組裝的可行性。上述薄膜經高溫燒結後形成多孔性結構。其表面形態、剖面結構、表面粗糙度、表面積、孔徑分佈、孔隙度及色素負載等特性,經鑑定及分析後顯示,具有成為色素增感太陽電池TiO2光電極的潛力。但目前所遭遇的問題是,聚電解質在現行燒結條件下,並不能完全的去除,其殘留對於光電極的特性有顯著的影響。本研究除了進行靜電逐層組裝之外,也藉由旋轉塗佈及刮刀塗佈等傳統光電極製備方法進行相關的比較。結果顯示,利用靜電逐層組裝所製備的薄膜在膜厚和表面形態的均勻性上有較好的表現,但可能是由於聚電解質殘留的因素,在表面積、孔徑分佈及色素負載方面,仍有一些不確定的因素存在,所以還不能明確地顯現靜電逐層組裝的優越性。

      In this study, electrostatic layer-by-layer (ELBL) deposition technique was successfully utilized to assemble 20 bilayers of polyelectrolyte and nanocrystalline TiO2 particles. Particle size and zeta potential measurements revealed that the charge of two kinds of nanocrystalline TiO2 (Alfa Aesar TiO2, Degussa P25) may be controlled by varying pH value of solution. Furthermore, the sequential buildup of polyelectrolyte and TiO2 nanocrystalline on glass substrate was evidenced by quartz crystal microbalance (QCM) measurement. By analyzing surface morphology, cross-section structure, roughness, surface area, pore size distribution, porosity, and dye loading of the sintered nanocomposite films, ELBL assembly finds the potential for fabricating photoelectrode of DSSCs. A problematic issue, however, is that polyelectrolyte can not be completely removed. The residuals of polyelectrolyte left in the final TiO2 film seem to greatly affect the characteristics of the electrode. One of the purposes of this study is to reveal the difference in the feature of the mesoporous photoelectrodes resulting from this method and the conventional spin and doctor blade coating methods. The experimental results obtained so far show that thin films of more uniform thickness and surface morphology can be achieved by ELBL assembly. However, the results of surface area, pore size distribution, and dye loading were subjected to uncertainty. This may be due to the residuals of polyelectrolyte in the TiO2 films. Further studies are desirable to reveal the superiority of ELBL assembly in fabricating photoelectrodes.

    中文摘要 Ⅰ Abstract Ⅱ 誌謝 Ⅲ 目錄 Ⅳ 表目錄 Ⅶ 圖目錄 Ⅷ 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 第二章 文獻回顧 4 2.1 色素增感太陽電池工作原理 4 2.2 標準色素增感太陽電池的電極製備方法 5 2.2.1 TiO2膠體溶液的合成 5 2.2.2 使用商品化的TiO2粉末 6 2.2.3 在導電基板上沉積TiO2 6 2.3 靜電逐層組裝技術 7 2.3.1 靜電逐層組裝的優點和特色 7 2.3.2 靜電逐層組裝的應用 8 2.4 色素增感太陽電池光電極特性的鑑定 9 第三章 實驗 14 3.1 材料 14 3.2 儀器設備 14 3.2.1 X光繞射分析儀 14 3.2.2 超音波震盪分散裝置 14 3.2.3 雷射光散射法粒徑及界面電位分析儀 15 3.2.4 石英晶體微天平 16 3.2.5 熱重分析儀 17 3.2.6 燒結裝置:高溫爐 17 3.2.7 掃描式電子顯微鏡 17 3.2.8 原子力顯微鏡 18 3.2.9 表面積測定儀 18 3.2.10 紫外光/可見光光譜儀 19 3.3 實驗方法 19 3.3.1 TiO2膠體溶液的製備 19 3.3.2 粒徑測定 20 3.3.3 界面電位測定 20 3.3.4 聚電解質溶液的製備 20 3.3.5 靜電逐層組裝的可行性:QCM的測定 21 3.3.6 聚電解質/TiO2混成薄膜的製備:靜電逐層組裝技術 22 3.3.7 TiO2薄膜的製備:旋轉塗佈法 22 3.3.8 TiO2薄膜的色素增感 23 第四章 結果與討論 30 4.1 TiO2奈米粒子的種類及晶型 30 4.2 pH值對TiO2奈米粒子的粒徑與界面電位的影響 30 4.2.1 TiO2(Alfa Aesar) 30 4.2.2 TiO2(Degussa P25) 31 4.3 靜電逐層組裝光電極的可行性 32 4.4 TiO2薄膜的燒結及聚電解質的去除 34 4.5 TiO2薄膜的表面形態及結構 35 4.6 TiO2薄膜的表面積及孔徑分佈 37 4.7 TiO2薄膜的色素增感 38 第五章 結論及建議 79 5.1 結論 79 5.2 建議 80 參考文獻 81 自述 88

    Ariga, K., Lvov, Y. and Kunitake, T., “Assembling Alternate Dye-Polyion Molecular Films by Electrostatic Layer-by-Layer Adsorption,” J. Am. Chem. Soc., 119, 2224, 1997b.

    Ariga, K., Lvov, Y., Onda, M., Ichinose, I. and Kunitake, T., “Alternately Assembled Ultrathin Film of Silica Nanoparticles and Linear Polycations,” Chem. Lett., 125, 1997a.

    Barb, C. J., Arendse, F., Comte, P., Jirousek, M., Lenzmann, F., Shklover, V. and Grtzel, M., “Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications,” J. Am. Ceram. Soc., 80, 3157, 1997.

    Bliznynuk, V. N. and Tsukruk, V. V., “Composite Self-Assembled Films from Charged Latex Nanoparticles.” Polym. Prepr. Am. Chem. Soc. Polym. Chem. Div., 38, 1, 963, 1997.

    Cahen, D., Hodes, G., Grtzel M., Guillemoles, J. F. and Riess, I., “Nature of Photovoltaic Action in Dye-Sensitized Solar Cells,” J. Phys. Chem. B, 104, 2053, 2000.

    Caruso, F., Caruso, R. A. and Mhwald, H., “Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating,” Science, 282, 1111, 1998.

    Cherian, S. and Wamser, C. C., “Adsorption and Photoactivity of Tetra(4-carboxyphenyl)porphyrin (TCPP) on Nanoparticulate TiO2,” J. Phys. Chem. B, 104, 3624, 2000.

    Colvin, V. L., Schlamp, M. C. and Alivisatos, A. P., “Light-Emitting Diodes Made from Cadmium Selenide Nanocrystals and a Semiconducting Polymer,” Nature, 370, 354, 1994.

    Deb, S. K., Ellingson, R., Ferrere, S., Frank, A. J., Gregg, B. A., Nozik, A. J., Park, N. and Schlichthrl, G., “Photochemical Solar Cells Based on Dye-Sensitization of Nanocrystalline TiO2,” National Energy Laboratory, Presented at the 2nd World Conference on Photovoltaic Solar Energy Conversion, 6-10 July, Austria, 1998.

    Decher, G., “Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites,” Science, 277, 1232, 1997.

    Decher, G. and Hong, J. D., “Buildup of Ultrathin Multilayer Films by a Self-Assembly Process: I. Consecutive Adsorption of Anionic and Cationic Bipolar Amphiphiles,” Makromol. Chem. Macromol. Symp., 46, 321, 1991a.

    Decher, G. and Hong, J. D., “Buildup of Ultrathin Multilayer Films by a Self-Assembly Process: II. Consecutive Adsorption of Anionic and Cationic Bipolar Amphiphiles and Polyelectrolytes on Charged Surfaces,” Ber. Bunsen-Ges. Phys. Chem., 95, 1430, 1991b.

    Decher, G., Hong, J. D. and Schmitt, J., “Buildup of Ultrathin Multilayer Films by a Self-Assembly Process: III. Consecutively Alternating Adsorption of Anionic and Cationic Polyelectrolytes on Charged Surfaces,” Thin Solid Films, 210/211, 831, 1992.

    Fulda, K. U., Kampes, A., Krasemann, L. and Tieke, B., “Self-Assembled Mono- and Multilayers of Monodisperse Cationic and Anionic Latex Particles,” Thin Solid Films, 327-329, 752, 1998.

    Gao, M., Richter, B., Kirstein, S. and Mhwald, H., “Electroluminescence Studies on Self-Assembled Films of PPV and CdSe Nanoparticles,” J. Phys. Chem. B, 102, 4096, 1998.

    Grtzel M., “Perspectives for Dye-Sensitized Nanocrystalline Solar Cells,” Prog. Photovolt. Res., Appl., 8, 171, 2000.

    Hagfeldt, A., Didriksson, B., Palmqvist, T., Lindstrm, H., Sdergren, S., Rensmo, H. and Lindquist, S. E., “Verification of High Efficiencies for the Grtzel-Cell. A 7% Efficient Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films,“ Solar Energy Mater. Sol. Cells, 31, 481, 1994.

    Hagfeldt, A. and Grtzel, M., “Light-Induced Redox Reactions in Nanocrystalline Systems,” Chem. Rev., 95, 49, 1995.

    Halme, J., ”Dye-Sensitized Nanostructured and Organic Photovoltaic Cells: Technical Review and Preliminary Tests,” Helsinki university of technology, 2002.

    He, J. A., Mosurkal, R., Samuelson, L. A., Li, L. and Kumar, J., “Dye-Sensitized Solar Cell Fabricated by Electrostatic Layer-by-Layer Assembly of Amphoteric TiO2 Nanoparticles,” Langmuir, 19, 2169, 2003.

    Iler, R. K., “Multilayers of Colloidal Particles,” J. Colloid Interface Sci., 21, 569, 1966.

    Kalyanasundaram, K. and Grtzel, M., “Application of Functionalized Transition Metal Complexes in Photonic and Optoelectronic Devices,” Coord. Chem. Rev., 77, 347, 1998.

    Kim, J. H., Kim, S. H. and Shiratori, S., “Fabrication of Nanoporous and Hetero Structure Thin Film via a Layer-by-Layer Self Assembly Method for a Gas Sensor,” Sensors and Actuators B, 102, 241, 2004.

    Kim, Y. G., Kim, J., Ahn, H., Kang, B., Sung, C., Samuelson, L. A. and Kumar, J., “Molecular Assembly by Sequential Ionic Adsorption of Nanocrystalline TiO2 and a Conjugated Polymer,” Journal of Macromolecular Science, A40, 12, 1307, 2003.

    Kleinfeld, E. R. and Ferguson, G. S., “Rapid, Reversible Sorption of Water from the Vapor by a Multilayered Composite Film: A Nanostructured Humidity Sensor,” Chem. Mater., 7, 2327, 1995.

    Kotov, N. A., Dkny, I. and Fendler, J. H., “Layer-by-Layer Self-Assembly of Polyelectrolyte-Semiconductor Nanoparticle Composite Films,” J. Phys. Chem., 99, 13065, 1995.

    Liu, Y., Wang, A. and Claus, R., “Molecular Self-Assembly of TiO2/Polymer Nanocomposite Films,” J. Phys. Chem. B, 101, 1385, 1997.

    Lvov, Y., Ariga, K., Ichinose, I. and Kunitake, T., “Assembly of Multicomponent Protein Films by Means of Electrostatic Layer-by-Layer Adsorption,” J. Am. Chem. Soc., 117, 6117, 1995.

    Lvov, Y., Ariga, K., Onda, M., Ichinose, I. and Kunitake, T., “Alternate Assembly of Ordered Multilayers of SiO2 and Other Nanoparticles and Polyions,” Langmuir, 13, 6195, 1997.

    Matthews, D., Infelta, P. and Grtzel M., “Calculation of the Photocurrent-Potential Characteristic for Regenerative, Sensitized Semiconductor Electrodes,” Solar Energy Mater. Sol. Cells, 44, 119, 1996.

    McEvoy, A. J., Grtzel, M., “Sensitization in Photochemistry and Photovoltaics,” Solar Energy Mater. Sol. Cells, 32, 3, 221, 1994.

    McKenzie, K. J. and Marken, F., “Accumulation and Reactivity of the Redox Protein Cytochrome c in Mesoporous Films of TiO2 Phytate,” Langmuir, 19, 4327, 2003.

    Mendelsohn, J. D., Barrett, C. J., Chan, V. V., Pal, A. J., Mayes, A. M. and Rubner, M. F., “Fabrication of Microporous Thin Films from Polyelectrolyte Multilayers,” Langmuir, 16, 5017, 2000.

    Mitzi, D. B., “Thin-Film Deposition of Organic- Inorganic Hybrid Materials,” Chem. Mater., 13, 3283, 2001.

    Nazeeruddin, M. K., Kay, A., Rodicio, I., Humphry-Baker, R., Műller, E., Liska, P., Vlachopoulos, N. and Grtzel, M., “Conversion of Light to Electricity by cis-X2Bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes,” J. Am. Chem. Soc., 115, 6382, 1993.

    O′Regan, B. and Grtzel, M., “A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films,” Nature, 353, 737, 1991.

    Peyratout, C. S. and Dhne, L., “Tailor-Made Polyelectrolyte Microcapsules: From Multilayers to Smart Containers,” Angew. Chem. Int. Ed., 43, 3762, 2004.

    Saito, Y., Kambe, S., Kitamura, T., Wada, Y. and Yanagida, S., “Morphology Control of Mesoporous TiO2 Nanocrystalline Films for Performance of Dye-Sensitized Solar Cells,” Solar Energy Mater. Sol. Cells, 83, 1, 2004.

    Serizawa, T. and Akashi, M., “Accumulation of Cationic-Polymer Grafted Poly(styrene) Nanospheres onto an Anionic-polymer Surface,” Chem. Lett., 809, 1997.

    Serizawa, T., Kamimura, S. and Akashi, M., “Electrostatic Adsorption of Polystyrene Particles with Different Surface Charges onto the Surface of an Ultrathin Polymer Film,” Colloids and Surfaces, 164, 237, 2000.

    Serizawa, T., Takeshita, H. and Akashi, M., “Electrostatic Adsorption of Polystyrene Nanospheres onto the Surface of an Ultrathin Polymer Film Prepared by Using an Alternate Adsorption Technique,” Langmuir, 14, 4088, 1998.

    Serizawa, T., Takeshita, H. and Akashi, M., “Ordered Monolayer Structures of Electrostatically Adsorbed Polystyrene Nanospheres on an Ultrathin Polymer Film Surface,” Chem. Lett., 487, 1998.

    Smestad, G., Bignozzi, C. and Argazzi, R., “Testing of Dye-Sensitized TiO2 Solar Cells I: Experimental Photocurrent Output and Conversion Efficiencies,” Solar Energy Mater. Sol. Cells, 32, 3, 259, 1994.

    Stanley, A., Verity, B. and Matthews, D., “Minimizing the Dark Current at the Dye-Sensitized TiO2 Electrode,” Solar Energy Mater. Sol. Cells, 52, 141, 1998.

    Sun, Y., Hao, E., Zhang, X., Yang, B., Gao, M. and Shen, J., “Monolayer of TiO2/PbS Coupled Semiconductor Nanoparticles,” Chem. Commun., 2381, 1996.

    Sun, Y., Hao, E., Zhang, X., Yang, B., Shen, J., Chi, L. and Fuchs, H., “Buildup of Composite Films Containing TiO2/PbS Nanoparticles and Polyelectrolytes Based on Electrostatic Interaction,” Langmuir, 13, 5168, 1997.

    Takenaka, S., Maehara, Y., Imai, H., Yoshikawa, M. and Shiratori, S., “Layer-by-layer Self-Assembly Replication Technique: Application to Photoelectrode of Dye-Sensitized Solar Cell,” Thin Solid Films, 438-439, 346, 2003.

    Tokuhisa, H. and Hammond, P. T., “Solid-State Photovoltaic Thin Films Using TiO¬2, Organic Dyes, and Layer-by-Layer Polyelectrolyte Nanocomposities,” Adv. Funct. Mater., 13, 11, 831, 2003.

    Tokuhisa, H. and Hammond, P. T., “Nonlithographic Micro- and Nanopatterning of TiO2 Using Polymer Stamped Molecular Templates,” Langmuir, 20, 1436, 2004.

    Wang, D., Caruso, R. A. and Caruso, F., “Synthesis of Macroporous Titania and Inorganic Composite Materials from Coated Colloidal Spheres- A Novel Route to Tune Pore Morphology,” Chem. Mater., 13, 364, 2001.

    Wang, D., Rogach, A. L. and Caruso, F., “Composite Photonic Crystals from Semiconductor Nanocrystal/Polyelectrolyte-Coated Colloidal Spheres,” Chem. Mater., 15, 2724, 2003.

    Wienke, J., Kroon, J. M., Sommeling, P. M., Kinderman, R., Spth, M., van Roosmalen, J. A. M. and Sinke, W. C., “Effect of TiO2-Electrode Properties on the Efficiency of Nanocrystalline Dye-Sensitized Solar Cells (nc-DSC),” ftp://ftp.ecn.nl/pub/www/library/report/1997/rx97033, 1997.

    Yonezawa, T., Onoue, S. and Kunitake, T., “Growth of Closely Packed Layers of Gold Nanoparticles on an Aligned Ammonium Surface,” Adv. Mater., 10, 5, 414, 1998.

    Zhang, Q., Gao, L. and Guo, J., “Effects of Calcination on the Photocatalytic Properties of Nanosized TiO2 Powders Prepared by TiCl4 Hydrolysis,” Applied Catalysis B: Environmental, 26, 207, 2000.

    Zhang, X. T., Sato, O., Taguchi, M., Einaga, Y., Murakami, T. and Fujishima, A., “Self-Cleaning Particle Coating with Antireflection Properties,” Chem. Mater., 17, 696, 2005.

    許志偉, 陳宏仁, 林怡君, 王立義, “有機/無機太陽能電池之現況發展,” 化工, 第52卷, 第2期, 49-58, 2005.

    張鑑祥, 楊毓民, “分子層級的薄膜表面型態控制-逐層組裝技術,” 化工技術, 9月號, 135-144, 2004.

    下載圖示 校內:立即公開
    校外:2005-07-06公開
    QR CODE