| 研究生: |
秦玉萱 Chin, Yu-Hshun |
|---|---|
| 論文名稱: |
探討磷酸烯醇丙酮酸羧化激酶在時間和空間上經由上調Wingless及TOR訊息途徑以促進高糖飲食誘導的腫瘤進程 PEPCK1 and PEPCK2 promote HDS-aggravated tumor progression by tempo-spatially upregulating Wingless and TOR signaling |
| 指導教授: |
顏賢章
Yan, Shian-Jang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生理學研究所 Department of Physiology |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 磷酸烯醇丙酮酸羧化激酶 、高糖飲食 、腫瘤進程 、Wingless/Wnt訊號傳遞 、mTOR/TOR訊息傳遞 、硫酸肼 、果蠅癌症生物模式系統 |
| 外文關鍵詞: | PEPCK1 and PEPCK2, high dietary sugar, tumor progression, Wingless/Wnt signaling, TOR-pS6 signaling, Hydrazinium sulfate, Drosophila Ras/Src tumor bearing animal model |
| 相關次數: | 點閱:184 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
過度攝取加工糖類及碳水化合物的高糖飲食方式近年來已成為現代人的飲食習慣,並且增加罹患代謝性相關疾病及癌症等機率。而我們實驗室也發現負責調控糖質新生的速率限制酵素-磷酸烯醇丙酮酸羧化激酶 (phosphoenolpyruvate carboxykinase, pepck) 在果蠅高糖飲食誘導的腫瘤進程中會促進腫瘤細胞生長,而磷酸烯醇丙酮酸羧化激酶有兩種亞型,一種是位於細胞質的PEPCK-C (PEPCK1);另一種是位於粒線體的PEPCK-M (PEPCK2)。然而,磷酸烯醇丙酮酸羧化激酶 1和2如何促進時間及空間上 HDS 誘導的腫瘤進展的分子機制仍不清楚。在這裡,使用果蠅 Ras/Src 腫瘤模型,我們發現降低腫瘤細胞中的磷酸烯醇丙酮酸羧化激酶1 或 2不僅減少了 HDS 誘導的腫瘤生長/負擔也使Wingless/Wnt及TOR-pS6訊號下降,並且通過部分地下調 dTOR、d4EBP 或 drpS6基因表達量。令人驚訝的是,各別降低磷酸烯醇丙酮酸羧化激酶1或2基因表達後恢復原先因高糖誘導腫瘤生長而破壞的果蠅眼睛發育指標-第二有絲分裂波,透過TOR-pS6訊號時間及空間上的活化。最後,我們使用硫酸肼 (Hydrazinium sulfate, HS)作為磷酸烯醇丙酮酸羧化激酶的抑制劑,可減少 HDS 誘導的發育延遲和腫瘤動物對 pepck1 敲低的荷瘤動物的致死率。綜合以上所述,這些證據說明通過磷酸烯醇丙酮酸羧化激酶1和2上調Wingless及TOR訊號傳遞而促進高糖飲食誘導的腫瘤進展,造成發育遲緩及致死。我們的研究提供由基礎分子、細胞和生物個體層次解釋高糖飲食誘導的腫瘤進展依賴於磷酸烯醇丙酮酸羧化激酶1和2的上調及強調磷酸烯醇丙酮酸羧化激酶軸作為高糖飲食誘導的代謝紊亂相關的癌症的治療目標及方式。
High dietary sugar (HDS) is a modern dietary practice with excessive consumption of carbohydrates including added sugars, increases the risk of metabolic disorders and their associated cancers. Our unpublished data have shown that cytosolic phosphoenolpyruvate carboxykinase1 (PEPCK1) and mitochondrial PEPCK2, key rate-limiting enzymes in gluconeogenesis, are upregulated to promote HDS-induced Ras/Src tumor growth in Drosophila. However, the molecular mechanisms by which PEPCK1 and PEPCK2 tempo-spatially promote HDS-induced tumor progression remain unclear. Here, using Drosophila Ras/Src tumor model, we found that pepck1 or pepck2 knockdown in tumor cells not only reduces HDS-induced tumor growth/burden but also decreases Wingless/Wnt and TOR-pS6 signaling partly via downregulation of dTOR, d4EBP, and drpS6. Surprisingly, pepck1 or pepck2 knockdown restores tempo-spatial activation of TOR-pS6 signaling in the second mitotic wave (SMW) for eye development, which is abolished in Ras/Src tumor bearing animals fed HDS. Finally, we found that Hydrazinium sulfate (HS), a PEPCK inhibitor, reduces HDS-induced developmental delay and tumor bearing animal lethality in tumor bearing animals with pepck1 knockdown. Taken together, these results suggest a novel mechanism by which PEPCK1 and PEPCK2 promote HDS-aggravated tumor progression to cause developmental delay and lethality by upregulating Wingless/Wnt and TOR-pS6 signaling. Our research explains the molecular, cellular, and organismal basis of HDS-aggravated tumor progression to be dependent on upregulation of PEPCK1 and PEPCK2, moreover; highlights the PEPCK axis as a therapeutic target for cancers associated with HDS-induced metabolic disorders.
Acosta-Jaquez, H. A., Keller, J. A., Foster, K. G., Ekim, B., Soliman, G. A., Feener, E. P., . . . Fingar, D. C. (2009). Site-specific mTOR phosphorylation promotes mTORC1-mediated signaling and cell growth. Mol Cell Biol, 29(15), 4308-4324.
Aragó, M., Moreno-Felici, J., Abás, S., Rodríguez-Arévalo, S., Hyroššová, P., Figueras, A., . . . Perales, J. C. (2020). Pharmacology and preclinical validation of a novel anticancer compound targeting PEPCK-M. Biomed Pharmacother, 121, 109601.
Barwell, T., DeVeale, B., Poirier, L., Zheng, J., Seroude, F., & Seroude, L. (2017). Regulating the UAS/GAL4 system in adult Drosophila with Tet-off GAL80 transgenes. PeerJ, 5, e4167.
Berster, J. M., & Göke, B. (2008). Type 2 diabetes mellitus as risk factor for colorectal cancer. Arch Physiol Biochem, 114(1), 84-98.
Bian, X. L., Chen, H. Z., Yang, P. B., Li, Y. P., Zhang, F. N., Zhang, J. Y., . . . Wu, Q. (2017). Nur77 suppresses hepatocellular carcinoma via switching glucose metabolism toward gluconeogenesis through attenuating phosphoenolpyruvate carboxykinase sumoylation. Nat Commun, 8, 14420.
Biochemistry 5th Edition. (2002). W H Freeman & Co.
Cheng, H., Zou, Y., Ross, J. S., Wang, K., Liu, X., Halmos, B., . . . Perez-Soler, R. (2015). RICTOR Amplification Defines a Novel Subset of Patients with Lung Cancer Who May Benefit from Treatment with mTORC1/2 Inhibitors. Cancer Discov, 5(12), 1262-1270.
Chlebowski, R. T., Bulcavage, L., Grosvenor, M., Tsunokai, R., Block, J. B., Heber, D., . . . et al. (1987). Hydrazine sulfate in cancer patients with weight loss. A placebo-controlled clinical experience. Cancer, 59(3), 406-410.
Chu, P. Y., Jiang, S. S., Shan, Y. S., Hung, W. C., Chen, M. H., Lin, H. Y., . . . Chen, L. T. (2017). Mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M) regulates the cell metabolism of pancreatic neuroendocrine tumors (pNET) and de-sensitizes pNET to mTOR inhibitors. Oncotarget, 8(61), 103613-103625.
Crotty, S., & Pipkin, M. E. (2015). In vivo RNAi screens: concepts and applications. Trends Immunol, 36(5), 315-322.
Csibi, A., Lee, G., Yoon, S. O., Tong, H., Ilter, D., Elia, I., . . . Blenis, J. (2014). The mTORC1/S6K1 pathway regulates glutamine metabolism through the eIF4B-dependent control of c-Myc translation. Curr Biol, 24(19), 2274-2280.
Düvel, K., Yecies, J. L., Menon, S., Raman, P., Lipovsky, A. I., Souza, A. L., . . . Manning, B. D. (2010). Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell, 39(2), 171-183.
Derwinger, K., Kodeda, K., Bexe-Lindskog, E., & Taflin, H. (2010). Tumour differentiation grade is associated with TNM staging and the risk of node metastasis in colorectal cancer. Acta Oncol, 49(1), 57-62.
El-Sahli, S., Xie, Y., Wang, L., & Liu, S. (2019). Wnt Signaling in Cancer Metabolism and Immunity. Cancers (Basel), 11(7).
Faubert, B., Solmonson, A., & DeBerardinis, R. J. (2020). Metabolic reprogramming and cancer progression. Science, 368(6487).
Fernández-Medarde, A., & Santos, E. (2011). Ras in cancer and developmental diseases. Genes Cancer, 2(3), 344-358.
Fevr, T., Robine, S., Louvard, D., & Huelsken, J. (2007). Wnt/beta-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. Mol Cell Biol, 27(21), 7551-7559.
Fortini, M. E., Skupski, M. P., Boguski, M. S., & Hariharan, I. K. (2000). A survey of human disease gene counterparts in the Drosophila genome. J Cell Biol, 150(2), F23-30.
Friberg, E., Orsini, N., Mantzoros, C. S., & Wolk, A. (2007). Diabetes mellitus and risk of endometrial cancer: a meta-analysis. Diabetologia, 50(7), 1365-1374.
Germani, F., Bergantinos, C., & Johnston, L. A. (2018). Mosaic Analysis in Drosophila. Genetics, 208(2), 473-490.
Goncalves, M. D., Lu, C., Tutnauer, J., Hartman, T. E., Hwang, S. K., Murphy, C. J., . . . Yun, J. (2019). High-fructose corn syrup enhances intestinal tumor growth in mice. Science, 363(6433), 1345-1349.
González, A., & Hall, M. N. (2017). Nutrient sensing and TOR signaling in yeast and mammals. Embo j, 36(4), 397-408.
Gordan, J. D., Thompson, C. B., & Simon, M. C. (2007). HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell, 12(2), 108-113.
Guertin, D. A., Stevens, D. M., Saitoh, M., Kinkel, S., Crosby, K., Sheen, J. H., . . . Sabatini, D. M. (2009). mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice. Cancer Cell, 15(2), 148-159.
Harachi, M., Masui, K., Okamura, Y., Tsukui, R., Mischel, P. S., & Shibata, N. (2018). mTOR Complexes as a Nutrient Sensor for Driving Cancer Progression. Int J Mol Sci, 19(10).
Heigwer, F., Port, F., & Boutros, M. (2018). RNA Interference (RNAi) Screening in Drosophila. Genetics, 208(3), 853-874.
Heuson, J.-C., & Legros, N. (1972). Influence of Insulin Deprivation on Growth of the 7,12-Dimethylbenz(a)anthracene-induced Mammary Carcinoma in Rats Subjected to Alloxan Diabetes and Food Restriction. Cancer Research, 32(2), 226.
Hidaka, S., Yasutake, T., Takeshita, H., Kondo, M., Tsuji, T., Nanashima, A., . . . Tagawa, Y. (2000). Differences in 20q13.2 copy number between colorectal cancers with and without liver metastasis. Clin Cancer Res, 6(7), 2712-2717.
Hirabayashi, S., Baranski, T. J., & Cagan, R. L. (2013). Transformed Drosophila cells evade diet-mediated insulin resistance through wingless signaling. Cell, 154(3), 664-675.
Hirakawa, Y., Ninomiya, T., Mukai, N., Doi, Y., Hata, J., Fukuhara, M., . . . Kiyohara, Y. (2012). Association between glucose tolerance level and cancer death in a general Japanese population: the Hisayama Study. Am J Epidemiol, 176(10), 856-864.
Hoffman, R. M. (2019). Clinical Studies of Methionine-Restricted Diets for Cancer Patients. Methods Mol Biol, 1866, 95-105.
Houde, V. P., Brûlé, S., Festuccia, W. T., Blanchard, P. G., Bellmann, K., Deshaies, Y., & Marette, A. (2010). Chronic rapamycin treatment causes glucose intolerance and hyperlipidemia by upregulating hepatic gluconeogenesis and impairing lipid deposition in adipose tissue. Diabetes, 59(6), 1338-1348.
Hu, C. M., Tien, S. C., Hsieh, P. K., Jeng, Y. M., Chang, M. C., Chang, Y. T., . . . Lee, W. H. (2019). High Glucose Triggers Nucleotide Imbalance through O-GlcNAcylation of Key Enzymes and Induces KRAS Mutation in Pancreatic Cells. Cell Metab, 29(6), 1334-1349.e1310.
Hu, M. B., Xu, H., Zhu, W. H., Bai, P. D., Hu, J. M., Yang, T., . . . Ding, Q. (2018). High-fat diet-induced adipokine and cytokine alterations promote the progression of prostate cancer in vivo and in vitro. Oncol Lett, 15(2), 1607-1615.
Hu, Y., Lu, W., Chen, G., Wang, P., Chen, Z., Zhou, Y., . . . Huang, P. (2012). K-ras(G12V) transformation leads to mitochondrial dysfunction and a metabolic switch from oxidative phosphorylation to glycolysis. Cell Res, 22(2), 399-412.
Hussain, R., Shaukat, Z., Khan, M., Saint, R., & Gregory, S. L. (2017). Phosphoenolpyruvate Carboxykinase Maintains Glycolysis-driven Growth in Drosophila Tumors. Sci Rep, 7(1), 11531.
Hyroššová, P., Aragó, M., Moreno-Felici, J., Fu, X., Mendez-Lucas, A., García-Rovés, P. M., . . . Perales, J. C. (2021). PEPCK-M recoups tumor cell anabolic potential in a PKC-ζ-dependent manner. Cancer Metab, 9(1), 1.
Iwabuchi, H., Sakamoto, M., Sakunaga, H., Ma, Y. Y., Carcangiu, M. L., Pinkel, D., . . . Gray, J. W. (1995). Genetic analysis of benign, low-grade, and high-grade ovarian tumors. Cancer Res, 55(24), 6172-6180.
Jaskiewicz, N. M., & Townson, D. H. (2019). Hyper-O-GlcNAcylation promotes epithelial-mesenchymal transition in endometrial cancer cells. Oncotarget, 10(30), 2899-2910.
Jee, S. H., Ohrr, H., Sull, J. W., Yun, J. E., Ji, M., & Samet, J. M. (2005). Fasting serum glucose level and cancer risk in Korean men and women. Jama, 293(2), 194-202. doi:10.1001/jama.293.2.194
Jennings, B. H. (2011). Drosophila – a versatile model in biology & medicine. Materials Today, 14(5), 190-195.
Jiang, Y., Pan, Y., Rhea, P. R., Tan, L., Gagea, M., Cohen, L., . . . Yang, P. (2016). A Sucrose-Enriched Diet Promotes Tumorigenesis in Mammary Gland in Part through the 12-Lipoxygenase Pathway. Cancer Res, 76(1), 24-29.
Jung, Y. S., & Park, J. I. (2020). Wnt signaling in cancer: therapeutic targeting of Wnt signaling beyond β-catenin and the destruction complex. Exp Mol Med, 52(2), 183-191.
Kim, W., Jang, Y. G., Yang, J., & Chung, J. (2017). Spatial Activation of TORC1 Is Regulated by Hedgehog and E2F1 Signaling in the Drosophila Eye. Dev Cell, 42(4), 363-375.e364.
Kobliakov, V. A. (2019). The Mechanisms of Regulation of Aerobic Glycolysis (Warburg Effect) by Oncoproteins in Carcinogenesis. Biochemistry (Mosc), 84(10), 1117-1128.
Kuhajda, F. P. (2006). Fatty acid synthase and cancer: new application of an old pathway. Cancer Res, 66(12), 5977-5980.
Kumar, J. P. (2020). Catching the Next Wave: Patterning of the Drosophila Eye by the Morphogenetic Furrow. In A. Singh & M. Kango-Singh (Eds.), Molecular Genetics of Axial Patterning, Growth and Disease in Drosophila Eye (pp. 97-120). Cham.
Leithner, K., Hrzenjak, A., Trötzmüller, M., Moustafa, T., Köfeler, H. C., Wohlkoenig, C., . . . Olschewski, H. (2015). PCK2 activation mediates an adaptive response to glucose depletion in lung cancer. Oncogene, 34(8), 1044-1050.
Li, N., Liu, Q., Xiong, Y., & Yu, J. (2019). Headcase and Unkempt Regulate Tissue Growth and Cell Cycle Progression in Response to Nutrient Restriction. Cell Rep, 26(3), 733-747.e733.
Li, Y., Luo, S., Ma, R., Liu, J., Xu, P., Zhang, H., . . . Huang, B. (2015). Upregulation of cytosolic phosphoenolpyruvate carboxykinase is a critical metabolic event in melanoma cells that repopulate tumors. Cancer Res, 75(7), 1191-1196.
Li, Y., Zhang, M., Dorfman, R. G., Pan, Y., Tang, D., Xu, L., . . . Zou, X. (2018). SIRT2 Promotes the Migration and Invasion of Gastric Cancer through RAS/ERK/JNK/MMP-9 Pathway by Increasing PEPCK1-Related Metabolism. Neoplasia, 20(7), 745-756.
Ling, S., Brown, K., Miksza, J. K., Howells, L., Morrison, A., Issa, E., . . . Zaccardi, F. (2020). Association of Type 2 Diabetes With Cancer: A Meta-analysis With Bias Analysis for Unmeasured Confounding in 151 Cohorts Comprising 32 Million People. Diabetes Care, 43(9), 2313-2322.
Liu, H., Fergusson, M. M., Wu, J. J., Rovira, II, Liu, J., Gavrilova, O., . . . Finkel, T. (2011). Wnt signaling regulates hepatic metabolism. Sci Signal, 4(158), ra6.
Liu, J., Gao, L., Zhang, H., Wang, D., Wang, M., Zhu, J., . . . Wang, C. (2013). Succinate dehydrogenase 5 (SDH5) regulates glycogen synthase kinase 3β-β-catenin-mediated lung cancer metastasis. J Biol Chem, 288(41), 29965-29973.
Liu, J., Ji, S., Liang, C., Qin, Y., Jin, K., Liang, D., . . . Yu, X. (2016). Critical role of oncogenic KRAS in pancreatic cancer (Review). Mol Med Rep, 13(6), 4943-4949.
Liu, M. X., Jin, L., Sun, S. J., Liu, P., Feng, X., Cheng, Z. L., . . . Xiong, Y. (2018). Metabolic reprogramming by PCK1 promotes TCA cataplerosis, oxidative stress and apoptosis in liver cancer cells and suppresses hepatocellular carcinoma. Oncogene, 37(12), 1637-1653.
Méndez-Lucas, A., Hyroššová, P., Novellasdemunt, L., Viñals, F., & Perales, J. C. (2014). Mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M) is a pro-survival, endoplasmic reticulum (ER) stress response gene involved in tumor cell adaptation to nutrient availability. J Biol Chem, 289(32), 22090-22102.
Masui, K., Tanaka, K., Ikegami, S., Villa, G. R., Yang, H., Yong, W. H., . . . Mischel, P. S. (2015). Glucose-dependent acetylation of Rictor promotes targeted cancer therapy resistance. Proc Natl Acad Sci U S A, 112(30), 9406-9411.
Mazzio, E., & Soliman, K. F. (2003). The role of glycolysis and gluconeogenesis in the cytoprotection of neuroblastoma cells against 1-methyl 4-phenylpyridinium ion toxicity. Neurotoxicology, 24(1), 137-147.
Mirzoyan, Z., Sollazzo, M., Allocca, M., Valenza, A. M., Grifoni, D., & Bellosta, P. (2019). Drosophila melanogaster: A Model Organism to Study Cancer. Front Genet, 10, 51.
Montal, E. D., Bhalla, K., Dewi, R. E., Ruiz, C. F., Haley, J. A., Ropell, A. E., . . . Girnun, G. D. (2019). Inhibition of phosphoenolpyruvate carboxykinase blocks lactate utilization and impairs tumor growth in colorectal cancer. Cancer Metab, 7, 8.
Montal, Emily D., Dewi, R., Bhalla, K., Ou, L., Hwang, Bor J., Ropell, Ashley E., . . . Girnun, Geoffrey D. (2015). PEPCK Coordinates the Regulation of Central Carbon Metabolism to Promote Cancer Cell Growth. Mol Cell, 60(4), 571-583.
Morrison Joly, M., Hicks, D. J., Jones, B., Sanchez, V., Estrada, M. V., Young, C., . . . Cook, R. S. (2016). Rictor/mTORC2 Drives Progression and Therapeutic Resistance of HER2-Amplified Breast Cancers. Cancer Res, 76(16), 4752-4764.
Mossmann, D., Park, S., & Hall, M. N. (2018). mTOR signalling and cellular metabolism are mutual determinants in cancer. Nat Rev Cancer, 18(12), 744-757.
Musa, J., Orth, M. F., Dallmayer, M., Baldauf, M., Pardo, C., Rotblat, B., . . . Grünewald, T. G. (2016). Eukaryotic initiation factor 4E-binding protein 1 (4E-BP1): a master regulator of mRNA translation involved in tumorigenesis. Oncogene, 35(36), 4675-4688.
Musselman, L. P., Fink, J. L., Narzinski, K., Ramachandran, P. V., Hathiramani, S. S., Cagan, R. L., & Baranski, T. J. (2011). A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. Dis Model Mech, 4(6), 842-849.
Ng, L. F., Kaur, P., Bunnag, N., Suresh, J., Sung, I. C. H., Tan, Q. H., . . . Tolwinski, N. S. (2019). WNT Signaling in Disease. Cells, 8(8).
Okada, M. (2012). Regulation of the SRC family kinases by Csk. Int J Biol Sci, 8(10), 1385-1397.
Pandey, U. B., & Nichols, C. D. (2011). Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev, 63(2), 411-436.
Pavlova, N. N., & Thompson, C. B. (2016). The Emerging Hallmarks of Cancer Metabolism. Cell Metab, 23(1), 27-47.
Perrimon, N., Ni, J. Q., & Perkins, L. (2010). In vivo RNAi: today and tomorrow. Cold Spring Harb Perspect Biol, 2(8), a003640.
Polakis, P. (2012). Wnt signaling in cancer. Cold Spring Harb Perspect Biol, 4(5).
Pothiwala, P., Jain, S. K., & Yaturu, S. (2009). Metabolic syndrome and cancer. Metab Syndr Relat Disord, 7(4), 279-288.
Previs, S. F., Brunengraber, D. Z., & Brunengraber, H. (2009). Is there glucose production outside of the liver and kidney? Annu Rev Nutr, 29, 43-57.
Qiao, H. H., Wang, F., Xu, R. G., Sun, J., Zhu, R., Mao, D., . . . Ni, J. Q. (2018). An efficient and multiple target transgenic RNAi technique with low toxicity in Drosophila. Nat Commun, 9(1), 4160.
Rapp, K., Schroeder, J., Klenk, J., Ulmer, H., Concin, H., Diem, G., . . . Weiland, S. K. (2006). Fasting blood glucose and cancer risk in a cohort of more than 140,000 adults in Austria. Diabetologia, 49(5), 945-952.
Ruan, H. B., Han, X., Li, M. D., Singh, J. P., Qian, K., Azarhoush, S., . . . Yang, X. (2012). O-GlcNAc transferase/host cell factor C1 complex regulates gluconeogenesis by modulating PGC-1α stability. Cell Metab, 16(2), 226-237.
Rudrapatna, V. A., Cagan, R. L., & Das, T. K. (2012). Drosophila cancer models. Dev Dyn, 241(1), 107-118.
Sanaki, Y., Nagata, R., Kizawa, D., Léopold, P., & Igaki, T. (2020). Hyperinsulinemia Drives Epithelial Tumorigenesis by Abrogating Cell Competition. Dev Cell, 53(4), 379-389.e375.
Sangüesa, G., Roglans, N., Baena, M., Velázquez, A. M., Laguna, J. C., & Alegret, M. (2019). mTOR is a Key Protein Involved in the Metabolic Effects of Simple Sugars. Int J Mol Sci, 20(5).
Saxton, R. A., & Sabatini, D. M. (2017). mTOR Signaling in Growth, Metabolism, and Disease. Cell, 168(6), 960-976.
Schatoff, E. M., Leach, B. I., & Dow, L. E. (2017). Wnt Signaling and Colorectal Cancer. Curr Colorectal Cancer Rep, 13(2), 101-110.
Shigeyama, Y., Kobayashi, T., Kido, Y., Hashimoto, N., Asahara, S., Matsuda, T., . . . Noda, T. (2008). Biphasic response of pancreatic beta-cell mass to ablation of tuberous sclerosis complex 2 in mice. Mol Cell Biol, 28(9), 2971-2979.
Shingler, E., Perry, R., Mitchell, A., England, C., Perks, C., Herbert, G., . . . Atkinson, C. (2019). Dietary restriction during the treatment of cancer: results of a systematic scoping review. BMC Cancer, 19(1), 811.
Stemmer, K., Perez-Tilve, D., Ananthakrishnan, G., Bort, A., Seeley, R. J., Tschöp, M. H., . . . Pfluger, P. T. (2012). High-fat-diet-induced obesity causes an inflammatory and tumor-promoting microenvironment in the rat kidney. Dis Model Mech, 5(5), 627-635.
Tanner, M. M., Tirkkonen, M., Kallioniemi, A., Collins, C., Stokke, T., Karhu, R., . . . et al. (1994). Increased copy number at 20q13 in breast cancer: defining the critical region and exclusion of candidate genes. Cancer Res, 54(16), 4257-4260.
Tian, T., Li, X., & Zhang, J. (2019). mTOR Signaling in Cancer and mTOR Inhibitors in Solid Tumor Targeting Therapy. Int J Mol Sci, 20(3).
Vander Heiden, M. G., Cantley, L. C., & Thompson, C. B. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 324(5930), 1029-1033.
Vigneri, P., Frasca, F., Sciacca, L., Pandini, G., & Vigneri, R. (2009). Diabetes and cancer. Endocr Relat Cancer, 16(4), 1103-1123.
Vincent, Emma E., Sergushichev, A., Griss, T., Gingras, M.-C., Samborska, B., Ntimbane, T., . . . Jones, Russell G. (2015). Mitochondrial Phosphoenolpyruvate Carboxykinase Regulates Metabolic Adaptation and Enables Glucose-Independent Tumor Growth. Mol Cell, 60(2), 195-207.
Visca, P., Sebastiani, V., Botti, C., Diodoro, M. G., Lasagni, R. P., Romagnoli, F., . . . Alo, P. L. (2004). Fatty acid synthase (FAS) is a marker of increased risk of recurrence in lung carcinoma. Anticancer Res, 24(6), 4169-4173.
Wang, Z., & Dong, C. (2019). Gluconeogenesis in Cancer: Function and Regulation of PEPCK, FBPase, and G6Pase. Trends Cancer, 5(1), 30-45.
Warr, C. G., Shaw, K. H., Azim, A., Piper, M. D. W., & Parsons, L. M. (2018). Using Mouse and Drosophila Models to Investigate the Mechanistic Links between Diet, Obesity, Type II Diabetes, and Cancer. Int J Mol Sci, 19(12).
Wen, X., Wu, Y., Awadasseid, A., Tanaka, Y., & Zhang, W. (2020). New Advances in Canonical Wnt/β-Catenin Signaling in Cancer. Cancer Manag Res, 12, 6987-6998.
Wu, Z., Wei, D., Gao, W., Xu, Y., Hu, Z., Ma, Z., . . . Li, Q. (2015). TPO-Induced Metabolic Reprogramming Drives Liver Metastasis of Colorectal Cancer CD110+ Tumor-Initiating Cells. Cell Stem Cell, 17(1), 47-59.
Yamaguchi, M., & Yoshida, H. (2018). Drosophila as a Model Organism. Adv Exp Med Biol, 1076, 1-10.
Yang, J., Kalhan, S. C., & Hanson, R. W. (2009). What is the metabolic role of phosphoenolpyruvate carboxykinase? J Biol Chem, 284(40), 27025-27029.
Yang, L., & Baker, N. E. (2006). Notch activity opposes Ras-induced differentiation during the Second Mitotic Wave of the developing Drosophila eye. BMC Dev Biol, 6, 8.
Yang, W., Xia, Y., Ji, H., Zheng, Y., Liang, J., Huang, W., . . . Lu, Z. (2011). Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation. Nature, 480(7375), 118-122.
Yoo, H. C., Yu, Y. C., Sung, Y., & Han, J. M. (2020). Glutamine reliance in cell metabolism. Exp Mol Med, 52(9), 1496-1516.
Yu, Y., Gong, L., & Ye, J. (2020). The Role of Aberrant Metabolism in Cancer: Insights Into the Interplay Between Cell Metabolic Reprogramming, Metabolic Syndrome, and Cancer. Front Oncol, 10, 942.
Zakikhani, M., Blouin, M. J., Piura, E., & Pollak, M. N. (2010). Metformin and rapamycin have distinct effects on the AKT pathway and proliferation in breast cancer cells. Breast Cancer Res Treat, 123(1), 271-279.
Zhan, T., Rindtorff, N., & Boutros, M. (2017). Wnt signaling in cancer. Oncogene, 36(11), 1461-1473.
Zhang, D., Tai, L. K., Wong, L. L., Chiu, L. L., Sethi, S. K., & Koay, E. S. (2005). Proteomic study reveals that proteins involved in metabolic and detoxification pathways are highly expressed in HER-2/neu-positive breast cancer. Mol Cell Proteomics, 4(11), 1686-1696.
Zoranovic, T., Manent, J., Willoughby, L., Matos de Simoes, R., La Marca, J. E., Golenkina, S., . . . Penninger, J. M. (2018). A genome-wide Drosophila epithelial tumorigenesis screen identifies Tetraspanin 29Fb as an evolutionarily conserved suppressor of Ras-driven cancer. PLoS Genet, 14(10), e1007688.
校內:2026-07-20公開