| 研究生: |
郭鳳文 Kuo, Fung-Wen |
|---|---|
| 論文名稱: |
一般建築與隔震建築之垂直向地震反應分析 Vertical Earthquake Response Analysis of General and Base-isolated Buildings |
| 指導教授: |
姚昭智
Yao, Chao-Chih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 154 |
| 中文關鍵詞: | 一般建築 、隔震建築 、SAP 2000 、垂直地表方向加速度 |
| 外文關鍵詞: | base-isolated system, vertical acceleration, SAP 2000, earthquake regulations |
| 相關次數: | 點閱:145 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現有研究對於建築物水平方向加速度之影響已有相當程度之了解,然仍缺乏垂直方向地表加速度對於建築物之影響,而目前現行建築物面對重大災害時,未必有徹底做好防災或減災之效用,故啟發本文探討地表垂直加速度對於建築物之影響,俾便加強國內對於垂直方向加速度影響之認知。同時,鑑於近年來隔震建築物在世界各國如歐美、日本等國家已逐漸發展成熟,在經歷實際地震時也已證明其具有良好之隔震能力,但同樣缺乏有關隔震建築在垂直方向反應之研究,本文因此同時納入隔震建築進行比較。
本研究收集台灣及日本一般建築與隔震建築之實際量測數據,並以80gal以上的強震紀錄資料配合結構分析設計軟體SAP2000,在不考慮土壤與結構互制之假設下,以美國SAC提供之標準建築抗彎矩構架Boston與LA區域模型與日本京都大學隔震實驗模型進行比較與分析。研究得出台灣耐震設計規範現行規定之加速度樓高放大倍率應以2倍為宜,隔震建築在垂直方向加速度與水平方向比值遠超過現行規範值與建議之加速度頂樓放大倍率公式。
Despite there are many researches on how horizontal acceleration affects general buildings now, we are still lack of knowledge on the effects of vertical acceleration on buildings. Since current buildings still cannot prevent earthquake disaster thoroughly, we decide to study the vertical acceleration effects on buildings. Base-isolated systems have been proven effective to reduce lost from earthquakes in countries such as America, Japan and so on, yet this system is also lack of researches on effects of vertical acceleration. Therefore, in our research, we compared the behaviors of general buildings and base-isolated buildings under vertical acceleration.
We collected the data of general and base-isolated system buildings in Taiwan and Japan and used the structural analysis software SAP2000 to analyzed the specified building model in Boston and LA provided by SAC from U.S. and base-isolated model provided by the Kyoto University in Japan.
Our results show that the current building code in Taiwan should specify the enlarged acceleration ratio be two on roof compare to ground motion. The ratio of analyzed horizontal to vertical acceleration is much larger than current code value.
1. AS1170.4-2007 (2001). Australian Standard Structural design actions. Sydney N.S.W.
2. ASCE-SEI 7-05 (2005). Minimum Design Loads for Buildings and Other Structures. U.S.A.
3. Bozorgnia, Y., Mahin, S. A., & Brady, Gerald. (1998). Vertical Response of Twelve Structures Recorded during the Northridge Earthquake. Earthquake Spectra, 14(3), 411-432.
4. Bozorgnia, Y., Niazi, M., & Campbell, Kenneth W. (1995). Characteristics of Free-field vertical ground motion during the Northridge Earthquake. Earthquake Spectra, 11(4), 515-525.
5. Eiji, Sato, Sachi, Furukawa, Atsuo, Kakechi, & Masayoshi, Nakashima (2011). Full-scale shaking table for examination of safety and functionality of base-isolated medical facilities. Earthquake Engineering & Structures Dynamics ,40(13), 1435-1453.
6. Elgamal, Ahmed, & He, Liangcai, (2004). Vertical Earthquake Ground Motion Records: An Overview, Journal of Earthquake Engineering, 8(5), 663-697.
7. Elnashai, A. S., He, Liangcai, & Elgamal, Ahmed. (2004). Spectra for Vertical Earthquake Ground Motion, 13th World Conference on Earthquake Engineering, Vancouver, Canada.
8. Mahin, S., Malley, J., & Hamburger, R., (2002). Overview of the FEMA/SAC program for reduction of earthquake hazards in steel moment frame structures. Journal of Constructional Steel Research, 58(5-8), 511-528.
9. Moroni, M. O., Sarrazin, M., & Boroschek, R. (1998). Experiments on a Base-Isolated Building in Santiago, Chile. Engineering Structures, 20(8), 720-725.
10. Papazoglou, A.J. & Elnashaf, A.S., (1996). Analytical and Field Evidence of the Damaging Effect of Vertical Earthquake Ground Motion. Earthquake Engineering & Structural Dynamics, 25, 1109-1137.
11. Sachi, Furukawa, Eiji, Sato, Shi, Yundong, & Nakashima, Masayoshi, (2012). Structural and Equipment Performance of Base-isolated Medical Facilities subjected to Strong Vertical Ground Motions, 15th World Conference on Earthquake Engineering, Lisbon, Portugal.
12. Shin, T. C. & Teng, T. L., (2001). An overview of the 1999 chi-chi, Taiwan, earthquake. Bulletin of the Seismological Society of America, 91(5), 895-913.
13. Skinner, R. I., Robinson, W.H. & McVerry G. H., (1993). An Introduction to Seismic Isolation, John Wiley & Sons, Chichester.
14. Wang, G. Q., Zhou, X. Y., Ma, Z. J., & Zhang, P. Z., (2001). A Preliminary Study on the Randomness of Response of the 1999 Chi- Chi, Taiwan, Earthquake. Bulletin of the Seismological Society of America, 91(5), 1358-1369.
15. William J. Hall (2000). State of the Art Report on Connection Performance. Report No. FEMA-355D. Washington, D.C.
16. 內政部營建署(2005)。建築物耐震設計規範及解說。台北市:營建雜誌社。
17. 日本建築中心(1984)。日本建築設備耐震設計‧施工指南(翻譯本)。中華民國建築學會1988年譯。
18. 王彥博,廖偉信(2001)。建築結構之隔震設計-鉛心橡膠支承(LRB)篇。土木工程技術,5(2),1-27。
19. 佐藤 栄児(2012)。震災時における建物の機能保持に関する研究開発。防災科学技術研究所,日本。
20. 何永裕(2011)。落地式設備抗震設計。中華民國冷凍空調,55,33-45。
21. 李冠興(2004)。軸向加勁阻尼器之防震效應(pp. 36-41)。碩士論文。逢甲大學土木及水利工程研究所,台中市。
22. 李森枏(2003)。SAP2000結構設計實務。台北市:科技圖書公司。
23. 林文隆(2007)。鋼筋混凝土結構物之地震易損性分析。碩士論文。國立中央大學土木工程研究所,桃園縣。
24. 林炯岳(1997)。垂直地震力對建築結構影響之研究。碩士論文。逢甲大學土木及水利工程研究所,台中市。
25. 洪李陵(2011)。結構動力學講義。國立成功大學土木工程系,台南市。
26. 陳逸軒(2010)。結構系統識別與損傷探測之研究。博士論文。國立交通大學土木工程學系博士班,新竹縣。
27. 曾瀚逸(2002)。建築結構在垂直地震作用下之動力反應特性。碩士論文。朝陽科技大學營建工程系,台中市。
28. 黃慶東(2000)。近斷層地震地動特性與震譜特性之探討。結構工程,15(2),91-113。
29. 廖健閔(2004)。設備運用滑動摩擦增補阻尼器隔震研究。碩士論文。國立成功大學建築研究所,台南市。
30. 劉大海、楊翠如(1997)。高層建築抗震設計(pp. 22)。台北市:淑馨出版社。
31. 蕭賀方(2002)。基礎隔震對房屋結構的耐震效益研究。碩士論文。國立成功大學土木工程研究所,台南市。