簡易檢索 / 詳目顯示

研究生: 蔡明洲
Tsai, Ming-Jhou
論文名稱: 分離高氏柴胡與兔尾草種子內生菌並評估其植物生長促進潛力
Isolation of seed endophytes from Bupleurum kaoi and Uraria crinita and evaluation of their plant growth-promoting potential
指導教授: 黃兆立
Huang, Chao-Li
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 熱帶植物與微生物科學研究所
Institute of Tropical Plant Sciences
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 79
中文關鍵詞: 種子內生菌促進植物生長細菌微生物肥料生物防治劑泛菌屬假單胞菌屬
外文關鍵詞: Seed endophytes, Plant growth-promoting bacteria, Biofertilizer, Biocontrol, Pantoea, Pseudomonas
相關次數: 點閱:39下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微生物製劑目前大多使用植物生長促進根系細菌與促進植物生長之真菌進行開發,然而內生菌為植物生長發育中重要的參與者,其中種子內生菌參與了種子的初期萌發與微生物族群的建立,並可以藉由母株垂直傳播至子代,具有微生物製劑開發的潛力。本篇論文研究分離高氏柴胡與兔尾草之種子內生菌,探討其促進植物生長細菌 (PGPB) 的能力,並評估其作為微生物製劑的可能性。結果顯示多數菌株皆有生產IAA的能力,且有51.6%的菌株擁有溶磷能力。對峙結果顯示分離自高氏柴胡的假單胞菌屬BKEP3_20可以抑制5個屬7種土傳性病害,分離自兔尾草的泛菌屬UCEP4_2則專一抑制白絹病。經由VOCs的測試發現BKEP3_20與UCEP4_2可以釋放揮發性有機物顯著抑制對白絹病真菌的生長。盆栽試驗使用胡蘿蔔來驗證促進植物生長能力,分別施用BKEP3_20、UCEP4_2與共接種來驗證。結果證實施用UCEP4_2可以顯著促進胡蘿蔔生長,擁有作為微生物肥料的能力;種子萌芽試驗證明了此兩株分離株於白絹病病土環境下,可以增加胡蘿蔔的發芽率。綜上所述,假單胞菌屬之BKEP3_20更適合開發作為廣效型生物防治劑,而泛菌屬的UCEP4_2除了適合做為微生物肥料使用之外,也適合開發為胡蘿蔔白絹病的生物防治劑。

    Endophytic bacteria are crucial participants in plant growth and development, with seed endophytes playing a significant role in the initial germination of seeds and the establishment of microbial communities. These bacteria can be vertically transmitted from the parent plants to the offspring, indicating their potential for development as an microbial agent. This study focuses on isolating seed endophytes from Bupleurum kaoi and Uraria crinita, exploring their plant growth-promoting bacteria (PGPB) abilities, and evaluating their potential as microbial agent. The results show that most isolates are capable of producing indole-3-acetic acid (IAA), with 51.6% of the isolates possessing phosphate solubilization ability. Antagonistic tests revealed that Pseudomonas sp. BKEP3_20, isolated from B. kaoi , inhibited seven soil-borne pathogens across five genera, while Pantoea sp. UCEP4_2, isolated from U. crinita, specifically inhibited Sclerotium rolfsii. Volatile organic compounds (VOCs) tests showed that both BKEP3_20 and UCEP4_2 release VOCs that significantly inhibited the growth of S. rolfsii. Pot experiments using carrots demonstrated that UCEP4_2 significantly promoted plant growth, suggesting its potential as a biofertilizer. Seed germination tests indicated that both BKEP3_20 and UCEP4_2 increase carrot germination rates in soils infected with S. rolfsii. In conclusion, Pseudomonas sp. BKEP3_20 is suitable for development as a broad-spectrum biocontrol, while Pantoea sp. UCEP4_2 is appropriate not only as a biofertilizer but also as a biocontrol agent for carrot southern blight.

    摘要i 致謝vi 目錄vii 表目錄x 圖目錄xii 第壹章 前言1 1.1.種子內生菌介紹1 1.2.PGPB能力介紹2 1.2.1 PGPB細菌之IAA生成能力介紹2 1.2.2 PGPB細菌之溶磷能力介紹2 1.2.3 PGPB細菌之幾丁質酶生成能力介紹3 1.3.高氏柴胡與兔尾草介紹3 1.3.1高氏柴胡介紹與應用3 1.3.2兔尾草介紹與應用4 1.4.台灣土傳性病害與防治手段4 1.5.胡蘿蔔與栽培病害5 1.6.研究動機6 第貳章 材料與方法8 2.1 種子內生菌之分離8 2.1.1種子來源及種子內生菌分離方式設計8 2.2 種子內生菌之植物生長促進能力評估8 2.2.1 內生菌菌株IAA生成能力分析8 2.2.2 內生菌菌株溶磷能力分析9 2.2.3 內生菌菌株幾丁質酵素生成能力分析10 2.3 內生菌菌株菌種鑑定10 2.3.1 種子內生菌DNA抽取10 2.3.2 PCR條件資料與基因定序11 2.4 種子內生菌防治植物病原菌之能力評估12 2.4.1 對峙試驗設計與抑制率之計算12 2.4.2 揮發性有機物(Volatile Organic Compounds,VOCs)試驗設計與抑制率之計算13 2.5 內生菌施用於新黑田五寸紅蘿蔔土壤之盆栽試驗13 2.5.1盆栽試驗設計13 2.5.2泛菌屬與假單胞菌屬之內生菌培養與接種14 2.5.3追肥來源與添加15 2.5.4胡蘿蔔植株生長情形之紀錄15 2.5.5土壤性質之測定16 2.6 種子內生菌促進植物萌芽能力之評估16 2.6.1 植物萌芽試驗設計16 2.6.2 內生菌影響白絹病土之植物萌芽試驗設計17 2.7 資料分析18 第參章 結果19 3.1 種子內生菌分離與PGPB能力之測試19 3.1.1 種子內生菌分離繼代與培養19 3.1.2 種子內生菌IAA分泌能力與溶磷能力測試與評分19 3.1.3 種子內生菌幾丁質酶生產能力測試20 3.2 16S rRNA V3-V7基因定序20 3.3 對峙試驗與VOCs測試20 3.3.1 土傳性病害之對峙試驗21 3.3.2 土傳性病害之VOCs試驗21 3.4 盆栽試驗22 3.4.1 胡蘿蔔植株生長情形之紀錄22 3.4.2 土壤性質之測定23 3.5 種子萌芽測試24 3.5.1胡蘿蔔種子萌芽測試 (濾紙)24 3.5.2病土種子萌芽試驗24 第肆章 討論25 4.1 分離之種子內生菌之PGPB之能力與菌株鑑定25 4.2 分離之種子內生菌對作物病原菌之成效與影響26 4.3 分離之種子內生菌對胡蘿蔔栽培與土壤性質之成效與影響27 4.4 分離之種子內生菌對胡蘿蔔種子萌芽之成效與影響28 第伍章 結論與建議30 第陸章 參考文獻31 表附錄38 圖附錄50

    汪澤宏、謝廷芳。花卉研究團隊研究現況與展望。行政院農業委員會農業試驗所。農業試驗所特刊第154號。2011。
    沈原民、趙佳鴻。通天草白絹病。植物保護專欄。臺中區農情月刊第一九六期第四版。2015。
    吳添益。合理化施肥的策略。苗栗區農業專訊第8期3-8。1999。
    林俊清、顏銘宏。高氏柴胡的資源開發與藥效評估。1999藥用植物之開發與利用研討會論文集51-72。1999。
    孫守恭。台灣土傳性病害研究之回顧與展望。植物保護學會會刊33:1-16。1991。
    黃勝忠。含有豐富植物天然色素的彩色胡蘿蔔。園藝作物。農業試驗所技術服務。2010。
    陳葦玲。活化休耕地—胡蘿蔔。臺中區農業專訊第80期。2013。
    陳威臣、葉茂生、蔡新聲。臺灣原生藥用植物—高氏柴胡腋芽培養之大量繁殖研究。中華農業研究53:27-38。2004。
    陳威臣、夏奇铌、葉茂生、曹進義、蔡新聲。誘引劑對高氏柴胡懸浮細胞生長與柴胡皂苷含量累積之影響。中華農業研究61:112-123。2012。
    陳威臣、闕甫伈、夏奇铌、葉茂生、曹進義。2,4-D對高氏柴胡葉片癒和組織誘導、增殖與柴胡皂苷含量之影響。作物、環境與生物資訊2:39-49。2005。
    彭慧美。蔬菜常見土壤傳播性病害分析與防治策略探討。植物保護專輯。花蓮區農業專訊第一一一期。2020。
    楊秀珠、余思葳、黃裕銘。胡蘿蔔之病蟲害發生與管理。合理、安全及有效使用農藥輔導教材—蔬菜。行政院農業委員會農業藥物毒物試驗所。2012。
    謝明憲、蔡淳瑩。胡蘿蔔外銷現況與銷日前景分析。農業新知與技術。臺南區農業專訊。2016。
    廖吉彥、張清安、賴瑞聲、鄧汀欽。感染通天草 (Uraria crinita) 的花生條斑病毒 (Peanut stripe virus) 之鑑定。植物保護學會會刊46:379-390。2004。
    劉新裕。柴胡之GMP栽培模式與品質評價。Yearbook of Chinese Medicine and Pharmacy , 24, 395-414。2006。
    Arif, M. S., Shahzad, S. M., Yasmeen, T., Riaz, M., Ashraf, M., Ashraf, M. A., Mubarik, M. S., & Kausar, R. (2017). Improving plant phosphorus (P) acquisition by phosphate-solubilizing bacteria. Essential Plant Nutrients: Uptake, Use Efficiency, and Management, 513-556.
    Chao, J., Dai, Y., Cheng, H. Y., Lam, W., Cheng, Y. C., Li, K., Peng, W. H., Pao, L. H., Hsieh, M. T., Qin, X. M., & Lee, M. S. (2017). Improving the concentrations of the active components in the herbal tea ingredient, Uraria crinita: The effect of post-harvest oven-drying processing. Scientific Reports, 7, 38763.
    Chatterjee, S., Sau, G. B., Sinha, S., & Mukherjee, S. K. (2012). Effect of co-inoculation of plant growth-promoting rhizobacteria on the growth of amaranth plants. Archives of Agronomy and Soil Science, 58, 1387-1397.
    Díaz, P. R., Merlo, F., Carrozzi, L., Valverde, C., Creus, C. M., & Maroniche, G. A. (2023). Lettuce growth improvement by Azospirillum argentinense and fluorescent Pseudomonas co-inoculation depends on strain compatibility. Applied Soil Ecology, 189, 104969.
    Dowarah, B., Agarwal, H., Krishnatreya, D. B., Sharma, P. L., Kalita, N., & Agarwala, N. (2021). Evaluation of seed associated endophytic bacteria from tolerant chilli cv. Firingi Jolokia for their biocontrol potential against bacterial wilt disease. Microbiological Research, 248, 126751.
    Felici, C., Vettori, L., Giraldi, E., Forino, L. M. C., Toffanin, A., Tagliasacchi, A. M., & Nuti, M. (2008). Single and co-inoculation of Bacillus subtilis and Azospirillum brasilense on Lycopersicon esculentum: effects on plant growth and rhizosphere microbial community. Applied Soil Ecology, 40, 260-270.
    Felse, P. A., & Panda, T. (2000). Production of microbial chitinases–a revisit. Bioprocess Engineering, 23, 127-134.
    Glick, B. R. (2012). Plant growth‐promoting bacteria: mechanisms and applications. Scientifica, 2012, 963401.
    Gopalakrishnan, S., & Srinivas, V. (2019). Management of soil-borne diseases of grain legumes through broad-spectrum actinomycetes having plant growth-promoting and biocontrol traits. Plant Microbe Interface, 129-144.
    Hadj Brahim, A., Ben Ali, M., Daoud, L., Jlidi, M., Akremi, I., Hmani, H., Feto, N. A., & Ben Ali, M. (2022). Biopriming of durum wheat seeds with endophytic diazotrophic bacteria enhances tolerance to Fusarium head blight and salinity. Microorganisms, 10, 970.
    Haas, D., & Défago, G. (2005). Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology, 3, 307-319.
    Johnston-Monje, D., & Raizada, M. N. (2011). Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. Plos One, 6, e20396.
    Khourchi, S., Elhaissoufi, W., Loum, M., Ibnyasser, A., Haddine, M., Ghani, R., Barakat, A., Zeroual, Y., Rchiad, Z., Delaplace, P., & Bargaz, A. (2022). Phosphate solubilizing bacteria can significantly contribute to enhance P availability from polyphosphates and their use efficiency in wheat. Microbiological Research, 262, 127094.
    Kora, C., McDonald, M. R., & Boland, G. J. (2003). Sclerotinia rot of carrot: an example of phenological adaptation and bicyclic development by Sclerotinia sclerotiorum. Plant Disease, 87, 456-470.
    Labuschagne, N., Pretorius, T., & Idris, A. H. (2011). Plant growth promoting rhizobacteria as biocontrol agents against soil-borne plant diseases. Plant Growth and Health Promoting Bacteria, 211-230.
    Leyronas, C., Halkett, F., & Faloya, V. (2023). Airborne versus soilborne inoculum: White mould, where do you come from?. Plant Pathology, 72, 677-685.
    Li, H., Parmar, S., Sharma, V. K., & White, J. F. (2019 a). Seed endophytes and their potential applications. Seed Endophytes: Biology and Biotechnology, 35-54.
    Li, L., Zhang, Z., Pan, S., Li, L., & Li, X. (2019 b). Characterization and metabolism effect of seed endophytic bacteria associated with peanut grown in south China. Frontiers in Microbiology, 10, 2659.
    Long, H. H., Schmidt, D. D., & Baldwin, I. T. (2008). Native bacterial endophytes promote host growth in a species-specific manner; phytohormone manipulations do not result in common growth responses. PloS One, 3, e2702.
    Lu, L., Chang, M., Han, X., Wang, Q., Wang, J., Yang, H., ... & Dai, S. (2021). Beneficial effects of endophytic Pantoea ananatis with ability to promote rice growth under saline stress. Journal of Applied Microbiology, 131, 1919-1931.
    Mao, Y. W., Lin, R. D., Hung, H. C., & Lee, M. H. (2014). Stimulation of osteogenic activity in human osteoblast cells by edible Uraria crinita. Journal of Agricultural and Food Chemistry, 62, 5581-5588.
    Mastretta, C., Taghavi, S., van der Lelie, D., Mengoni, A., Galardi, F., Gonnelli, C., Barac, T., Boulet, J., Weyens, N., & Vangronsveld, J. (2009). Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. International Journal of Phytoremediation, 11, 251-267.
    Matsumoto, H., Fan, X., Wang, Y., Kusstatscher, P., Duan, J., Wu, S., Chen, S., Qiao, K., Wang, Y., Ma, B., Zhu, G., Hashidoko, Y., Berg, G., Cernava, T., & Wang, M. (2021). Bacterial seed endophyte shapes disease resistance in rice. Nature Plants, 7, 60-72.
    Mendrofa, A., Munir, E., Yurnaliza, Y., Lutfia, A., & Hartanto, A. (2021). Chitinase and antifungal activity of endophytic fungi isolated from Hedychium coronarium J. Koenig. Agriculturae Conspectus Scientificus, 86, 131-137.
    Mukherjee, A., Singh, B. K., & Verma, J. P. (2020). Harnessing chickpea (Cicer arietinum L.) seed endophytes for enhancing plant growth attributes and bio-controlling against Fusarium sp. Microbiological Research, 237, 126469.
    Ngalimat, M. S., Mohd Hata, E., Zulperi, D., Ismail, S. I., Ismail, M. R., Mohd Zainudin, N. A. I., Saidi, N. B.,& Yusof, M. T. (2021). Plant growth-promoting bacteria as an emerging tool to manage bacterial rice pathogens. Microorganisms, 9, 682.
    Padder, S. A., Rather, R. A., Bhat, S. A., Shah, M. D., Baba, T. R., & Mubarak, N. M. (2022). Dynamics, phylogeny and phyto-stimulating potential of chitinase synthesizing bacterial root endosymbiosiome of North Western Himalayan Brassica rapa L. Scientific Reports, 12, 6742.
    Pellegrini, M., Pagnani, G., Bernardi, M., Mattedi, A., Spera, D. M., & Gallo, M. D. (2020). Cell-free supernatants of plant growth-promoting bacteria: A review of their use as biostimulant and microbial biocontrol agents in sustainable agriculture. Sustainability, 12, 9917.
    Pirttilä, A. M., Mohammad Parast Tabas, H., Baruah, N., & Koskimäki, J. J. (2021). Biofertilizers and biocontrol agents for agriculture: How to identify and develop new potent microbial strains and traits. Microorganisms, 9, 817.
    Popržen, T., Nikolić, I., Krstić-Milošević, D., Uzelac, B., Trifunović-Momčilov, M., Marković, M., & Radulović, O. (2023). Characterization of the IAA-Producing and-Degrading Pseudomonas Strains Regulating Growth of the Common Duckweed (Lemna minor L.). International Journal of Molecular Sciences, 24, 17207.
    Rojas-Tapias, D. F., Bonilla, R., & Dussán, J. (2014). Effect of inoculation and co-inoculation of Acinetobacter sp. RG30 and Pseudomonas putida GN04 on growth, fitness, and copper accumulation of maize (Zea mays). Water, Air, & Soil Pollution, 225, 1-13.
    Santoyo, G., Orozco-Mosqueda, M. D. C., & Govindappa, M. (2012). Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: a review. Biocontrol Science and Technology, 22, 855-872.
    Shahzad, R., Khan, A. L., Bilal, S., Asaf, S., & Lee, I. J. (2018). What is there in seeds? Vertically transmitted endophytic resources for sustainable improvement in plant growth. Frontiers in Plant Science, 9, 24.
    Sritongon, N., Boonlue, S., Mongkolthanaruk, W., Jogloy, S., & Riddech, N. (2023). The combination of multiple plant growth promotion and hydrolytic enzyme producing rhizobacteria and their effect on Jerusalem artichoke growth improvement. Scientific Reports, 13, 5917.
    Truyens, S., Weyens, N., Cuypers, A., & Vangronsveld, J. (2015). Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environmental Microbiology Reports, 7(1), 40-50.
    Vagelas, I., & Gowen, S. R. (2012). Control of Fusarium oxysporum and root-knot nematodes (Meloidogyne spp.) with Pseudomonas oryzihabitans. Pak. J. Phytopathol, 24, 32-38.
    Vaghela, B., Vashi, R., Rajput, K., & Joshi, R. (2022). Plant chitinases and their role in plant defense: A comprehensive review. Enzyme and Microbial Technology, 159, 110055.
    Vujanovic, V., & Germida, J. J. (2017). Seed endosymbiosis: a vital relationship in providing prenatal care to plants. Canadian Journal of Plant Science, 97, 972-981.
    Yen, G. C., Lai, H. H., & Chou, H. Y. (2001). Nitric oxide-scavenging and antioxidant effects of Uraria crinita root. Food Chemistry, 74, 471-478.
    Yen, M. H., Lin, C. C., Chuang, C. H., & Liu, S. Y. (1991). Evaluation of root quality of Bupleurum species by TLC scanner and the liver protective effects of “xiao-chai-hu-tang” prepared using three different Bupleurum species. Journal of ethnopharmacology, 34, 155-165.
    Zhang, X., Ma, Y. N., Wang, X., Liao, K., He, S., Zhao, X., Guo, H., Zhao, D., & Wei, H. L. (2022). Dynamics of rice microbiomes reveal core vertically transmitted seed endophytes. Microbiome, 10, 216.
    Zhang, Z., Liu, T., Zhang, X., Xie, J., Wang, Y., Yan, R., Jiang, Y., & Zhu, D. (2021). Cultivable endophytic bacteria in seeds of Dongxiang wild rice and their role in plant-growth promotion. Diversity, 13, 665.
    Zhou, Y., Yang, Z., Liu, J., Li, X., Wang, X., Dai, C., Zhang, T., Carrión, V. J., Wei, Z., Cao, F., Delgado-Baquerizo, M.,& Li, X. (2023). Crop rotation and native microbiome inoculation restore soil capacity to suppress a root disease. Nature Communications, 14, 8126.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE