| 研究生: |
陳凱斌 Chen, Kai-Bin |
|---|---|
| 論文名稱: |
在氣/液界面上DPPC/長碳鏈醇類混合單分子層的行為 Mixed Monolayer Behavior of DPPC with Normal Long Chain Alcohols at the Air/Water Interface |
| 指導教授: |
張鑑祥
Chang, Chien-Hsiang 楊毓民 Yang, Yu-Min |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 肺泡界面活性劑 、崩潰 、成核成長 、熱力學性質 、混合單分子層 |
| 外文關鍵詞: | DPPC, FM, relaxation |
| 相關次數: | 點閱:102 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用肺泡界面活性劑(lung surfactants)的主要成分二軟脂醯卵磷脂(dipalmitoyl phosphatidylcholine, DPPC)與長碳鏈醇類在氣/液界面上所形成的單分子層,分別於溫度15℃、25℃及37℃下得到表面壓與每分子佔據面積關係的等溫線。藉由理論分析,發現無論在15℃、25℃或37℃時,混合系統都具有可混合性。在25℃及37℃下的DPPC等溫線中,可以明顯看出液態凝縮相和液態擴展相的相變化區存在,添加了長碳鏈醇後,相變化區則不見了,代表兩分子層在界面上混合得很好,所以並未出現DPPC分子的特殊相變化區。當溫度降低或添加的醇類碳鏈長度增加時,會造成單分子層的可壓縮係數降低或流動性變差。
在單分子層崩潰點的鬆弛數據,若以多種成核成長模式分析的結果,發現在所有組成下的崩潰數據皆可以利用兩個階段的成核成長模式描述,分別是第一階段Prout-Tompkins模式,及第二階段的分子衰變二次模式。在DPPC單分子層中添加長碳鏈醇類,可以使DPPC分子層容易產生成核成長。於螢光顯微鏡的分析中,發現隨著單分子層鬆弛時間的增加,崩潰分子層的成核成長現象變得明顯,而溫度提高可以加速成核成長的反應。溫度的降低或醇類碳鏈長度增加,均會使得分子層變得堅硬,崩潰時易產生破裂的結構。在過度壓縮單分子層時,更容易產生破裂結構,成核成長現象更加明顯,推斷由於過度壓縮可以克服剛開始成核成長所需的活化能,而加速單分子層崩潰的進行。
This study investigated the mixed monolayer behavior of dipalmitoyl phosphatidylcholine (DPPC), the major component of lung surfactants, with normal long-chain alcohols at the air/water interface. Surface pressure-area per molecule isotherms of the mixed monolayers were measured at 15, 25, and 37℃, respectively. The analysis demonstrated that DPPC and long-chain alcohols were miscible at the interface. At 25 and 37℃, a liquid-expanded to liquid-condensed phase transition was observed in a DPPC monolayer. However, the characteristic phase transition of a DPPC monolayer disappeared in the presence of long-chain alcohols, indicating DPPC was miscible with long-chain alcohols at the interface. At a lower temperature or with increasing hydrocarbon chain length of alcohols, the compressibility or fluidity of the mixed monolayers became lower.
The relaxation data of the mixed monolayers at respective collapse points were analyzed by various nucleation and growth models. It was found that the data could be described by a two-stage model with the Prout-Tompkins and second-order decay modes, respectively. The addition of long-chain alcohols in a DPPC monolayer seemed to enhance the collapse behavior of DPPC. From the fluorescence microscopy analysis, one can find that the collapse behavior of the mixed monolayers became significant with increasing relaxation time or temperature. At a lower temperature or with increasing hydrocarbon chain length of the alcohols, the mixed monolayer became rigid and fracture structures were easily detected. When the mixed monolayers were over-compressed, the formation of fracture structures or collapse behavior became significant, probably due to the overcome of activation energy required for a nucleation and growth process of a collapse monolayer.
Asai, Y., Colloids Surfaces A: Physicochem. Eng. Aspects, 163 (2000) 265.
Baglion, P., Cestelli, G., Dei. L., and Gabrielli, G., J. Colloid Interface Sci., 93 (1983) 402.
Bangham, A. D., Morley, C. J., and Phillips, M. C., Biochimica et Biophysica Acta, 573 (1979) 552.
Brancato, S., and Serfis, A., J. Colloid Interface Sci., 239 (2001) 139.
Brook, J. H., Alexander, A. E., Retardation of Evaporation by Monolayers, Academic Press, New York, 1962.
Cevc, G., in “Liposome Technology: Liposome Preparation and Related Techniques,” Gregoriadis, G., Ed.; CRC Press: Boca Raton, Florida, 1993; Vol. I.
Cordero, S. R., Weston, K. D., and Buratto, S. K., Thin Solid Films, 360 (2000) 139.
Crommelin, D. J. A., and Schreier, H., “Colloidal Drug Delivery Systems,” Kreuter, J., Ed.; Marcel Dekker, Inc.: New York, 1994.
Durand, D. J., Clymanet, R. I., and Heymann, M. A., J. Pediatrics, 107 (1985) 775.
de la Fuente Feria, J., and Rodríguez Patino, J. M., Colloids Surfaces, 104 (1995) 29
Gabrielli, G., and Baglioni, P., J. Colloid Interface Sci., 83 (1981) 221.
Gaines, G. L., Jr., “Insoluble Monolayers at Liquid-Gas Interface,” Wiley Press: New York, 1966.
Gardner, J. W., Addison, J. V., and Schechter, R. S., AIChE J., 24 (1978) 400.
Goodrich, F. C., Proc. Internal. Congr. Surface Activity, I (1975) 85.
Gopal, A., and Lee, K. Y. C., J. Phys. Chem. B, 105 (2001) 10348.
Guay, D. and Leblance, R. M., Langmuir, 3 (1987) 575.
Györvary, E., Albers, W. M., and Peltonen, J., Langmuir, 15 (1999) 2516.
Jones, M. N., and Chapman, D., “Micelles, Monolayers, and Biomembranes,” Wiley-Liss, Inc.: New York, 1955.
Kane, S. A., Compton, M., and Wilder, N., Langmuir, 16 (2000) 8447.
King, R. J., and Clements, J. A., Am. J. Physiol., 223 (1972) 727.
Kondrashkina, E. A., Hagedorn, K., Vollhardt, D., Schmidbauer, M., and Köhler, R., Langmuir, 12 (1996) 5148.
Kubo, I., Adachi, S., Maeda, H., Seki, A., Thin Solid Films, 393 (2001) 80.
Lawrie, G. A., Gentle, I. R., and Barnes, G. T., Colloids Surfaces A: Physicochem. Eng. Aspects, 171 (2000) 217.
Lee, K. Y. C., Lipp, M. M., Zasadzinski, J. A., and Waring, A. J., Colloids Surfaces A: Physicochem. Eng. Aspects, 128 (1997) 225.
Macdonald, R.C., “Vesicle,” Rosoff, M., Ed., Marcel Dekker, Inc.: New York, 1996.
McConlogue, C. W., and Vanderlick, T. K., Langmuir, 14 (1998) 6556.
Miñones, J. J., Carrera, C., Dynarowicz-Latka, P., Miñones, J., Conde, O., Seoane, R., and Patino, J. M. R., Langmuir, 17 (2001) 1477.
Mori, O., Imae, T., Colloids Surfaces B: Biointerfaces, 9 (1997) 31.
Notter, R. H., ”Pulmonary Surfactant,” Robertson, B., van Golde, L.M.G., and Batenburg, J. J., Eds.; Elsevier Press: New York, 1984.
Pagano, R. E., and Gershfeld, N. L., J. Phys. Chem., 76 (1972) 1238.
Prout, E. G., and Tomkims, F. C., Trans. Faraday Soc., 40 (1944) 488.
Prout, E. G., and Tomkims, F. C., Trans. Faraday Soc., 42 (1946) 468.
Puggelli, M., Gabrielli, G., and Gaminati, G., Colloids Surfaces A: Physicochem. Eng. Aspects, 267 (1989) 65.
Rise, H. E. Jr., and Kimball, W. A., “Proceedings of the Second International Congress of Surface Activity,” Vol. I (1957) 57.
Robertson, B., Van Golde, L. M. G., and Batenburg, J. J., “Pulmonary Surfactant,” Elsevier, New York, 1984.
Robertson, B., Van Golde, L. M. G., and Batenburg, J. J., “Pulmonary Surfactant: From Molecular Biology to Clinical Practice,” Elsevier, New York, 1992.
Saulnier, P., Foussard, F., Boury, F., Proust, J. E., J. Colloid Interface Sci., 218 (1999) 40.
Schief, W. R., Dennis, S. R., Frey, W. Vogel, V., Colloids Surfaces A: Physicochem. Eng. Aspects, 171 (2000) 75.
Sestak, J., and Berggren, G., Thermochim. Acta, 3 (1971) 1.
Smith, T., J. Colloid Interface Sci., 25 (1967) 443.
Smith, R. D. and Berg, J. C., J. Colloid Interface Sci., 74 (1980) 273.
Taniguchi, M., Ueno, N., Okamoto, K., Karthaus, O., Shimomura, M., and Yamagishi, A., Langmuir, 15 (1999) 7700.
Ter Minassian-Saraga, L., J. Chem. Phys., 52 (1955) 181.
Tooley, W. H., Clements, J. A., Muramatsu, K., Brown, C. L., and Schlueter, M. A., American Review of Respiratory Disease, 136 (1987) 651.
Vollhart, D., and Gutberlet, T., Colloids Surfaces A: Physicochem. Eng. Aspects, 102 (1995) 257.
Zhang, H., Wang, X., Cui, G., and Li, J., Colloids Surfaces A: Physicochem. Eng. Aspects, 175 (2000) 77.
Zhao, J., Vollhart, D. Brezesinski, G., Siegel, S. Wu, J., Li, J. B., and Miller, R., Colloids Surfaces A: Physicochem. Eng. Aspects, 171 (2000) 175.
陳凱斌,”氣液界面上雙成分混合單分子層性質之研究,” 國立成功大學化學工程學系碩士論文,民國八十五年(1996)。