簡易檢索 / 詳目顯示

研究生: 呂巧玲
Lyu, Chiao-Ling
論文名稱: 以Tris(benzenethiolato)phosphine 為配位基與高價釩金屬生成之化合物的合成鑑定與反應性探討
Syntheses, Characterization and Reactivity of High Valent Vanadium Complexes with Tris(benzenethiolato)phosphine Derivatives
指導教授: 許鏵芬
Hsu, Hua-Fen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 76
中文關鍵詞: 固氮酵素非釩氧化合物親核性攻擊二氯甲烷
外文關鍵詞: nitrogenase, non-oxovanadium, nucleophilic attack, methylene chloride
相關次數: 點閱:62下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一種四芽含硫配位基PS3*([P(C6H3-3-Ph-2-S)3]3-)被用來與釩三價及釩四價起始物反應,以期能夠了解高價釩硫化學的作用。在此,我們合成三種非釩氧化合物分別是: [NPent4][VIV(PS3*)(PS2*SH)](1)、 [NEt4][VIII(PS3*)Cl] (2)、[(NPr4)2][VIV(PS3*)2] (3),並以紫外光-可見光光譜、循環電位法、核磁共振光譜加以鑑定。這些錯合物的固態結構都以X光單晶繞射儀鑑定。錯合物1具有釩四價七配位中心結構並鍵結兩個PS3*配位基,其中一個硫醇基是沒有鍵結的。錯合物2具有釩三價五配位中心結構並鍵結一個PS3*配位基以及一個氯離子。錯合物3 則具有釩四價八配位中心構結並鍵結兩個PS3*配位基。
    錯合物1溶在二氯甲烷中展現親核性反應,並形成錯合物[NEt4][VIII(PS3*)Cl](2) and [VIV((PS3*)2CH2],其中[VIV((PS3*)2CH2]的結構是由一個亞甲基置入兩個硫原子之間,從這樣的結果來看,可以了解這個反應發生是因為與釩鍵結的硫原子上具有孤對電子,並與二氯甲烷進行親核性攻擊,而詳細的機制仍然未明。
    錯合物1和3對氧氣有反應性,液態暴露在空氣中時會進行氧化反應並形成錯合物[V(PS3*)2]-,但是[V(PS3*)2]-的固態產物尚未得到,而類似物質[NEt4][V(PS3”)2]已經被合成出並經過鑑定,它是以一個具有自由基的四價釩錯合物與五價釩硫錯合物的共振形式存在。

    In our effort to understand high valent vanadium sulfur chemistry, a tetradentate thiolato phosphine ligand, PS3* ([P(C6H3-3-Ph-2-S)3]3-), was utilized to interacting with VIII and VIV species. As a result, three non-oxovanadium complexes were isolated. These complexes are [NPent4][VIV(PS3*)(PS2*SH)](1), [NEt4][VIII(PS3*)Cl](2) and [(NPr4)2][VIV(PS3*)2](3). These three complexes were characterized by various chemical techniques such as UV-vis-NIR Spectroscopy, Cyclic Voltammetry, and Nucleic Magnetic Resonance Spectroscopy. X-ray crystallography was also applied to obtain the structural information. Complex 1 has a hepta-coordinated vanadium(IV) center by binding to two PS3* ligand. However, one of thiolate in the title ligand remains protonated and unbound. Complex 2 has a penta-coordinate vanadium(III) center by binding to one PS3* ligand and one chloride ion. Complex 3 has an octa-coordinated vanadium(IV) center by binding to two PS3* ligand.
    Complex 1 shows the reactivity towards to CH2Cl2. Dissolving the solid of 1 in CH2Cl2 led to the formation of [NEt4][VIII(PS3*)Cl](2) and [VIV((PS3*)2CH2] where a CH2 moiety was inserted to two thiolato groups . Clearly, the reaction causes the cleavage of C-Cl bond in CH2Cl2 through the nucleophilic attack of the lone-pair electrons in vanadium bound sulfur. However, the detailed mechanism remains unclear.
    [NPent4][VIV(PS3*)(PS2*SH)](1) and [(NPr4)2][VIV(PS3*)2](3) also show the reactivity toward to dioxygen. The exposure of 1 and 3 in the air cause the formation of [V(PS3*)2]- in situ. [V(PS3*)2]- has not been isolated, however, its analogue [NEt4][V(PS3”)2] has been isolated and well characterized. [NEt4][V(PS3”)2] is identified as a resonance forms between V(V)-thiolate and V(IV)-thiyl radical species.

    Table of Contents Abstract I Abstract in Chinese III Acknowledgement IV Table of Contents VI List of Tables VIII List of Figures IX List of Schemes XIII Abbreviations XIV Chapter 1. Introduction 1 1-1 Vanadium-thiolate chemistry 1 1-2 Vanadium Nitrogenase 2 1-3 Reactivity of transition metal thiolate complexes 3 1-4 Nucleophilic attack of metal thiolates complexes 3 1-5 The explorations of Non-oxovanadium complexes 6 1-6 Motivation 9 Chapter 2. Results and discussion 10 2-1 Synthesis and Characterization of [NPent4][VIV(PS3*)(PS2*SH)] (1) 10 2-2 Characterization of [NEt4][VIII(PS3*)Cl] (2) 22 2-3 Synthesis and characterization of [(NPr4)2][VIV(PS3*)2] (3) 26 2-4 The reactivity towards to Methylene chloride 33 2-5 The reactivity towards to dioxygen. 38 Chapter 3. Conclusions 44 Chapter 4. Experimental and Instruments 47 4-1 General procedures 47 4-2 Syntheses 48 Synthesis of [NPent4][VIV(PS3*)(PS2*SH)] (1) 48 Synthesis of [NEt4][VIII(PS3*)Cl] (2) 48 Synthesis of [(NPr4)2][VIV(PS3*)2] (3) 49 Synthesis of PS3* 49 References 55 Appendix 59

    1.(a) Crans, D. C.; Smee, J. J.; Gaidamauskas, E.; Yang, L., The Chemistry and Biochemistry of Vanadium and the Biological Activities Exerted by Vanadium Compounds. Chem. Rev. 2004, 104, 849-902; (b) Baran, E. J., Model Studies Related to Vanadium Biochemistry: Recent Advances and Perspectives. J. Braz. Chem. Soc. 2003, 14, 878-888; (c) Baran, E. J., A special issue:“New Directions in Chemistry and Biological Chemistry of Vanadium”. Coord. Chem. Rev. 2003, 237, 1-286; (d) Baran, E. J., A special issue dedicated to biological aspects of vanadium. J. Inorg. Biochem. 2000, 80, 1-194.
    2.Baran, E. J., Oxovanadium(IV) and oxovanadium(V) complexes relevant to biological systems. J. Inorg. Biochem. 2000, 80 (1-2), 1-10.
    3.(a) Huyer, G.; Liu, S.; Kelly, J.; Moffat, J.; Payette, P.; Kennedy, B.; Tsaprailis, G.; Gresser, M. J.; Ramachandran, C., Mechanism of Inhibition of Protein-tyrosine Phosphatases by Vanadate and Pervanadate. J. Biol. Chem. 1997, 272 (2), 843-851; (b) Benabe, J. E.; Echegoyen, L. A.; Pastrana, B.; Martínez-Maldonado, M., Mechanism of inhibition of glycolysis by vanadate. J. Biol. Chem. 1987, 262 (20), 9555-9560; (c) Rehder, D., Biological and medicinal aspects of vanadium. Inorg. Chem. Commun. 2003, 6 (5), 604-617.
    4.Taylor, S. W.; Kammerer, B.; Bayer, E., New Perspectives in the Chemistry and Biochemistry of the Tunichromes and Related Compounds. Chem. Rev. 1997, 97 (1), 333-346.
    5.Garner, C. D.; Armstrong, E. M.; Berry, R. E.; Beddoes, R. L.; Collison, D.; Cooney, J. J. A.; Ertok, S. N.; Helliwell, M., Investigations of Amavadin. J. Inorg. Biochem. 2000, 80 (1-2), 17-20.
    6.Bruech, M.; Quintanilla, M. E.; Legrum, W.; Koch, J.; Netter, K. J.; Fuhrmann, G. F., Effects of vanadate on intracellular reduction equivalents in mouse liver and the fate of vanadium in plasma, erythrocytes and liver. Toxicology 1984, 31 (3-4), 283-295.
    7.Eady, R. R., Structure−Function Relationships of Alternative Nitrogenases. Chem. Rev. 1996, 96 (7), 3013-3030.
    8.(a) Kim, J.; Rees, D., Structural models for the metal centers in the nitrogenase molybdenum-iron protein. Science 1992, 257 (5077), 1677-1682; (b) Einsle, O.; Tezcan, F. A.; Andrade, S. L. A.; Schmid, B.; Yoshida, M.; Howard, J. B.; Rees, D. C., Nitrogenase MoFe-Protein at 1.16 Å Resolution: A Central Ligand in the FeMo-Cofactor. Science 2002, 297 (5587), 1696-1700.
    9.(a) Eady, R. R., Current status of structure function relationships of vanadium nitrogenase. Coordin. Chem. Rev. 2003, 237 (1-2), 23-30; (b) Rehder, D., Vanadium nitrogenase. J. Inorg. Biochem. 2000, 80 (1-2), 133-136.
    10.Grapperhaus, C. A.; Poturovic, S.; Mashuta, M. S., Dichloromethane Alkylates a Trithiolato-Ruthenium Complex to Yield a Methylene-Bridged Thioether Core. Synthesis and Structural Comparison to the Thiolato-Ruthenium Precursor. Inorg. Chem. 2002, 41 (17), 4309-4311.
    11.Wang, Q.; Marr, A. C.; Blake, A. J.; Wilson, C.; Schroder, M., Formation of nickel-thiolate aggregates via reaction with CH2Cl2. Chem. Commun. 2003, (22), 2776-2777.
    12.Sellmann, D., et al., Transition-metal Complexes with Sulfur Ligands. 23. Coupled alkylation, Redox and Substitution-reactions at Metal Sulfur Centers - Reactions of Ru(PPh3)2dttd with Azides RN3 and NEt4CN in CH2Cl2 (dttd2- = 2,3,-8,9-dibenzo-1,4,7,10-tetrathiadecane (-2)-R = NEt4+, C(NH2)(NMe2)2+, H+, Me3Si-). Z. Naturforsch., B: Chem, Sci. 1986, (41b), 1541-1550.
    13.McKenna, M.; Wright, L. L.; Miller, D. J.; Tanner, L.; Haltiwanger, R. C.; DuBois, M. R., Synthesis of inequivalently bridged cyclopentadienyl dimers of molybdenum and a comparison of their reactivities with unsaturated molecules and with hydrogen. J. Am. Chem. Soc. 1983, 105 (16), 5329-5337.
    14.(a) Musie, G.; Reibenspies, J. H.; Darensbourg, M. Y., Synthesis, Structures, and Electrochemical Properties of Nickel Complexes of Macrocyclic N2S2 Aminothioethers. Inorg. Chem. 1998, 37 (2), 302-310; (b) Oster, S. S.; Lachicotte, R. J.; Jones, W. D., Structure of [Ni(dippe)([mu]-S)]2 and its reaction products. The nucleophilicity of the Ni2S2 fragment. Inorganica Chimica Acta 2002, 330 (1), 118-127.
    15.del Río, I.; van Koten, G.; Lutz, M.; Spek, A. L., Haloalkane C−X Bond Activation by a Ruthenium(II) Complex:  X-ray Characterization of a Ruthenium(III) Intermediate Species in the Atom Transfer Radical Polymerization of Methyl Methacrylate. Organometallics 2000, 19 (3), 361-364.
    16.Gómez-Benítez, V.; Toscano, R. A.; Morales-Morales, D., Synthesis and characterization of [Pd{PhP(C6H4-2-SCH2Cl)(C6H4-2-S)}(Ph2PCH2CH2PPh2)]Cl: An example of hemilability and dichloromethane activation. Inorg. Chem. Commun. 2007, 10 (1), 1-6.
    17.Bleeke, J. R.; Shokeen, M.; Wise, E. S.; Rath, N. P., Thiapentadienyl−Rhodium−Phosphine Chemistry. Organometallics 2006, 25 (10), 2486-2500.
    18.Yam, V. W.-W.; Yeung, P. K.-Y.; Cheung, K.-K., Unusual reactivity of a luminescent bis-[small micro]-sulfido platinum(II) dimer with methylene chloride. X-Ray structural characterization of [Pt2([small micro]-S)2(dppy)4] and [Pt(dppy)2(S2CH2)](dppy = 2-diphenylphosphinopyridine). J. Chem. Soc., Chem. Commun. 1995, (2), 267-269.
    19.E. Bayer, H. Z. K., Naturforsch 1972, 27b, 207.
    20.Kneifel, H.; Bayer, E., Determination of the Structure of the Vanadium Compound, Amavadine, from Fly Agaric. Angew. Chem. Int. Ed. in Engl. 1973, 12 (6), 508-508.
    21.Wang, D.; Behrens, A.; Farahbakhsh, M.; Gätjens, J.; Rehder, D., Formation, Preservation, and Cleavage of the Disulfide Bond by Vanadium. Chem. Eur. J. 2003, 9 (8), 1805-1813.
    22.(a) Armstrong, E. M.; Beddoes, R. L.; Calviou, L. J.; Charnock, J. M.; Collison, D.; Ertok, N.; Naismith, J. H.; Garner, C. D., The chemical nature of amavadin. J. Am. Chem. Soc. 1993, 115 (2), 807-808; (b) D. Smith, P.; E. Berry, R.; M. Harben, S.; L. Beddoes, R.; Helliwell, M.; Collison, D.; David Garner, C., New vanadium-(IV) and -(V) analogues of Amavadin [double dagger]. J. Chem. Soc., Dalton Trans. 1997, (23), 4509-4516; (c) de C. T. Carrondo, M. A. A. F.; Duarte, M. T. L. S.; Pessoa, J. C.; Silva, J. A. L.; da Silva, J. J. R. F.; Vaz, M. C. T. A.; Vilas-Boas, L. F., Bis-(N-hydroxy-iminodiacetate)vanadate(IV), a synthetic model of 'amavadin'. J. Chem. Soc., Chem. Commun. 1988, (17), 1158-1159; (d) Hubregtse, T.; Kooijman, H.; Spek, A. L.; Maschmeyer, T.; Sheldon, R. A.; Arends, I. W. C. E.; Hanefeld, U., Study on the isomerism in meso-amavadin and an amavadin analogue. J. Inorg. Biochem. 2007, 101 (6), 900-908.
    23.Sutradhar, M.; Mukherjee, G.; Drew, M. G. B.; Ghosh, S., Simple General Method of Generating Non-oxo, Non-amavadine Model Octacoordinated Vanadium(IV) Complexes of Some Tetradentate ONNO Chelating Ligands from Various Oxovanadium(IV/V) Compounds and Structural Characterization of One of Them. Inorg. Chem. 2007, 46 (12), 5069-5075.
    24.Bonamico, M.; Dessy, G.; Fares, V.; Scaramuzza, L., Structural studies of eight-co-ordinate metal complexes. Part I. Crystal and molecular structures of tetrakis(phenyldithioacetato)vanadium(IV) and tetrakis(dithiobenzoato)vanadium(IV). J. Chem. Soc., Dalton Trans. 1974, (12), 1258-1263.
    25.Chang, Y.-H.; Su, C.-L.; Wu, R.-R.; Liao, J.-H.; Liu, Y.-H.; Hsu, H.-F., An Eight-Coordinate Vanadium Thiolate Complex with Charge Delocalization between V(V)−Thiolate and V(IV)−Thiyl Radical Forms. J. Am. Chem. Soc. 2011, 133 (15), 5708-5711.
    26.Chang, Y.-H., Vanadium and Iron Thiolate Chemistry Relevant to Biological Systems. 2011.
    27.Hsu, H.-F.; Su, C.-L.; Gopal, N. O.; Wu, C.-C.; Chu, W.-C.; Tsai, Y.-F.; Chang, Y.-H.; Liu, Y.-H.; Kuo, T.-S.; Ke, S.-C., Redox Chemistry in the Reaction of Oxovanadium(V) with Thiolate-Containing Ligands: the Isolation and Characterization of Non-Oxo Vanadium(IV) Complexes Containing Disulfide and Thioether Groups. Eur. J. Inorg. Chem. 2006, 2006 (6), 1161-1167.
    28.Chen, T.-T., The Ligand-based Reactivity of Vanadium-thiolate Complexes. 2010.
    29.Wang, R.-C., Synthesis and characterization of Vanadium(III、IV) complexes of Tri(thiolate)phosphine ligands. 2006.
    30.Ashby, M. T.; Enemark, J. H.; Lichtenberger, D. L., Destabilizing d.pi.-p.pi. orbital interactions and the alkylation reactions of iron(II)-thiolate complexes. Inorg. Chem. 1988, 27 (1), 191-197.
    31.Manzer, L. E., Tetrahydrofuran Complexes of Selected Early Transition-metals. Inorg. Synth. 1982, 21, 138.
    32.(a) Umemoto, T.; Ishihara, S., Effective methods for preparing S-(trifluoromethyl)dibenzothiophenium salts. Journal of Fluorine Chemistry 1998, 92 (2), 181-187; (b) Newman, M. S.; Karnes, H. A., The Conversion of Phenols to Thiophenols via Dialkylthiocarbamates1. The Journal of Organic Chemistry 1966, 31 (12), 3980-3984.
    33.Block, E.; Ofori-Okai, G.; Zubieta, J., 2-Phosphino- and 2-phosphinylbenzenethiols: new ligand types. J. Am. Chem. Soc. 1989, 111 (6), 2327-2329.

    下載圖示 校內:2013-07-27公開
    校外:2016-07-27公開
    QR CODE