簡易檢索 / 詳目顯示

研究生: 李育儒
Li, Yu-Ju
論文名稱: 銑削製程工件形狀幾何變異之分析
The Analysis of Geometric Dimension And Variance of Workpiece in Milling Process
指導教授: 王俊志
Wang, J-J Junz
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 83
中文關鍵詞: 銑削製程幾何公差動態銑削力尺寸誤差變異
外文關鍵詞: milling process, geometric tolerance, dynamic milling force, the variance of dimension
相關次數: 點閱:103下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 如何確實掌握銑削加工後工件尺寸為切削加工中普遍且重要之課題,影響產品尺寸及其分佈的因素有:熱誤差、工具機空間誤差、刀具與工件受力偏移與刀具偏擺,一般而言,工具機空間誤差與刀具偏擺量值較小且不因切削條件而急劇變化。然而,在切削負載小之精切削條件下,切削力小且切削溫度變化較小,若要確實掌握工件尺寸,刀具偏擺與工具機空間誤差之影響則不可忽略。本文分析各幾何尺寸變化之瞬時銑削力、刀具偏擺與工具機空間誤差並探討各因子之變異,並結合誤差傳遞原理預測工件尺寸誤差與分佈情形。最後再藉由工件加工面上各點尺寸誤差分佈情形,進一步預測工件幾何公差:平行度、真圓度與曲面輪廓度。實驗結果發現,本文提出之工件尺寸預測模式,能快速且正確掌握球銑、端銑與精加工製程之工件尺寸誤差與幾何公差。

    It is common and important problem to control and predict the dimension of the part after milling. The important factors influence the final part dimension and dimensional distribution can be divided into four categories: thermal error, machine tool spatial errors, deflection of tool and workpiece and tool runout. Generally speaking, the value of machine tool spatial error and tool runout are small and changes a little when cutting speed is selected as a constant. However, in the light and precision cutting conditions, cutting force and the difference of the cutting temperature are much less than those in the heavy cutting conditions, the influences of the tool runout and the machine spatial errors are needed to be concerned in analyzing the final part dimension. This paper focuses on analyzing the value and the variance of the dynamic milling force of cutting region, tool runout and machine spatial error on cutting path to find out the final part dimension and dimensional distribution. Furthermore, parallelism, roundness and profile of geometric tolerance, are discussed by combining the dimension and the dimensional distribution on the cutting surface. The experiment results shows the final milling part dimension and geometric tolerance can be estimated precisely through measuring the cutting force, tool runout, stiffness of tool and workpiece and machine spatial error in end, ball-end and finishing machining process.

    摘要 I Abstract II 誌謝 III 總目錄 IV 表目錄 VII 圖目錄 IX 符號表 XII 第一章 緒論 1 1.1前言 1 1.2文獻回顧 2 1.3研究動機與目的 4 1.4研究範疇與架構 5 第二章 銑削力分析模式 7 2.1 前言 7 2.2 銑削座標系統 7 2.3 角度域(angular domain)的銑削力 11 2.3.1基本切削函數(elementary cutting function) 11 2.3.2 屑寬密度函數(chip width density function) 12 2.3.3 刀刃序列函數 14 2.3.4 角度域總銑削力 14 第三章 加工件尺寸誤差與幾何公差預測模式 17 3.1 前言 17 3.2 加工件尺寸誤差預測與變異模式之建立 18 3.2.1 表面生成窗 19 3.2.1.1圓柱形端銑刀表面生成窗 19 3.2.1.2球銑刀表面生成窗 21 3.2.2 刀具與工件受力偏移 22 3.2.2.1 圓柱形端銑刀刀具與工件受力分析 22 3.2.2.2 球銑刀刀具與工件受力分析 23 3.2.2.3 刀具與工件受力偏移分析 24 3.2.3 刀具偏擺分析 24 3.2.4 工具機空間誤差地圖 25 3.2.4.1 XYFZ構型之誤差模型 26 3.2.5加工件尺寸誤差變異模式之建立 28 3.3工件形狀幾何預測模式 30 3.3.1 工件平行度預測 30 3.3.2 工件真圓度預測 31 3.3.3 工件曲面輪廓度預測 33 第四章 實驗方法與結果討論 35 4.1前言 35 4.2 實驗設置 35 4.2.1 尺寸誤差變異模式與平行度估測之驗證 35 4.2.2 真圓度估測之驗證 37 4.2.3 球銑尺寸誤差變異模式與曲面輪廓度估測之驗證 38 4.3 實驗設備與儀器 39 4.3.1 實驗設備與儀器規格 39 4.3.2 儀器架設 40 4.3.3 工件修整工作 41 4.4 加工件尺寸誤差量測 41 4.4.1 Case 1 ~ Case 4長方體工件尺寸誤差量測 41 4.4.2 Case 5圓柱工件尺寸誤差量測 42 4.4.3 Case 6曲面銑削工件尺寸誤差量測 43 4.5 刀具剛性、工件剛性與綜合剛性之表現 44 4.5.1 刀具剛性 44 4.5.2 工件剛性 46 4.5.3 刀具與工件之綜合剛性 48 4.6 刀具偏擺之量測 48 4.7 工具機空間誤差分析 49 4.7.1 Case 1~Case 4 工具機空間誤差分析 49 4.7.2 Case 5 工具機空間誤差分析 50 4.7.3 Case 6 工具機空間誤差分析 51 4.7 銑削力分析 52 4.8 尺寸誤差與幾何公差分析 54 4.8.1 端銑工件尺寸誤差與平行度分析 54 4.8.2 圓柱銑削工件真圓度分析 58 4.8.3 球銑曲面工件尺寸誤差與曲面輪廓度分析 59 4.9 結果討論 61 第五章 精加工工件尺寸誤差與幾何公差分析 64 5.1前言 64 5.1微觀尺度下類斜面銑削力預測模式 64 5.2切屑厚度對比切削係數之影響 66 5.3微觀尺度類斜面銑削力預測模式驗證實驗 67 5.4精加工工件尺寸誤差與幾合公差預測 68 5.5實驗結果討論 69 5.5.1刀具偏擺(eR)量測 69 5.5.2銑削力及其變異量測 69 5.5.3加工件尺寸誤差與幾何公差分析 71 第六章 結論與建議 74 6.1結論 74 6.2建議 75 附錄 78

    [1]Smith, S., and J. Tlusty, “An overview of modeling and simulation of the milling process,” ASME Journal of Engineering for Industry, Vol. 113, pp. 169-175, 1991.
    [2]Kline, W. A. DeVor, R. E., and Shareef, I. A., “The prediction of surface accuracy in end milling,” ASME Journal of Engineering for Industry, Vol. 104, pp. 272-278, 1982.
    [3]Erhan Budak and Yusuf Altintas, “Peripheral milling conditions for improved dimensional accuracy,” International Journal of Machine Tools & Manufacture, Vol. 34, pp. 907-918, 1994.
    [4]Won-Soo Yun, Jeong Hoon Ko, “Development of virtual machining system, part 2: prediction and analysis of a machined surface error,” International Journal of Machine Tools & Manufacture, Vol. 42, pp. 1607-1615, 2002.
    [5]M. N. Islam, Han Ul Lee, and Dong-Woo Cho, ”Prediction and analysis of size tolerances achievable in peripheral end milling,” International Journal of advance manufacture technology, Vol. 39, pp. 129-141, 2008.
    [6]Tony L. Schmitz, John C. Ziegert, J.Suzanne Canning, Raul Zapata, ”Case study : Acomparison of error sources in high-speed milling,” Precision Engineering, Vol. 32, pp. 126-133, 2008.
    [7]高嘉懋,考慮工具機空間誤差與製程變異之產品誤差模式建立與驗證,國立成功大學機械工程學系,2008.
    [8]彭啟明,銑削動態力與工具機空間誤差對加工件尺寸誤差之影響,國立成功大學機械工程學系,2009.
    [9]Martellotti, M. E., “An Analysis of the Milling Process,” Transaction of ASME, Vol. 63, pp.677-700, 1941.
    [10]Koenigsberger, F., and Sabberwal, A. J. P., “An investigation into the cutting force pulsations during milling operations,” International journal of machine tool design and research, Vol. 1, pp. 15-33, 1961.
    [11]Tlusty, J., and P. MacNeil, “Dynamics of Cutting Forces in End milling,” CIRP annals, Vol. 24, pp. 21-25, 1975.
    [12]J.J. Wang, S.Y. Liang and J.W. Book, “Convolution analysis of Milling Force Pulsation,“ ASME Journal of Engineering for Industry, Vol. 116, pp. 17-25, 1994.
    [13]Ismail Lazoglu, S.Y. Liang, “Modeling of ball-end milling forces with cutter axis inclination,“ ASME Journal of Manufacturing Science and Engineering, Vol. 22, pp. 3-11, 2000.
    [14]黃朝鈺,球銑刀步進銑削之銑削力及穩定性分析,國立成功大學機械工程學系,2000
    [15]Schultschik, R., “The components of the volumetric accuracy, ” Annals of the CIRP, Vol. 25/1, pp. 223-228, 1977.

    [16] Zhang, G., Ouyang, R., Lu, B., and Hocken, R., “A displacement method for machine geometry calibration,” Annals of the CIRP, Vol. 37/1, pp. 515-518, 1988.
    [17] Dorndorf, U., Kiridena, V., S., B., and Ferreira, P., M., “Optimal budgeting of quasistatic machine tool errors,” ASME Journal of Engineering for Industry, Vol. 116, pp. 42-53,1994.
    [18] Y. Lin and Y. Shen., “Modelling of five-axis machine tool metrology models using the matrix summation approach,” International Journal of advance manufacture technology, Vol. 21, pp.243-248,2003
    [19] Wang, C., “Laser vector measurement technique for the determination and compensation of volumetric positioning errors. Part 1: Basic theory,” American Institute of Physics, 2000.
    [20] W. Knapp, ETH Zurich., “Test of the Three-dimensional uncertainty of machine tools and measuring machine and its relation to the machine errors,” Annals of the CIRP, Vol. 32/1, pp. 459-464, 1983.
    [21] Yashiaki Kakino, Yukitoshi Ihara, and Yoshio Nakatsu., “The measurement of motion errors of nc machine tools and diagnosis of their origins by using telescoping magnetic ball bar method,” Annals of the CIRP, Vol. 32/1, pp. 459-464, 1983.
    [22]Heui Jae Pahk, Young Sam Kim, and Joon Hee Moon,.“A new technique for volumetric error assessment of cnc machine tools incorporating ball bar measurement and 3D volumetric error model,” International Journal of machine tools and manufacture, Vol. 37, pp.1583-1596,1997
    [23]H. Kunzmann, F. Waldele,.“On testing coordinate measuring machines (CMM) with kinematic reference standards (KRS),” Annals of the CIRP, Vol. 32/1, pp. 459-464, 1983.

    下載圖示 校內:2015-08-06公開
    校外:2015-08-06公開
    QR CODE