研究生: |
林家銘 Lin, Chia-Ming |
---|---|
論文名稱: |
基於DOE-ML-HA方法之輕量化IC阻值優化整合框架 A Lightweight Integrated Framework for IC Resistance Optimization Based on DOE-ML-HA Methods |
指導教授: |
陳響亮
Chen, Shang-Liang |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 製造資訊與系統研究所 Institute of Manufacturing Information and Systems |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 英文 |
論文頁數: | 161 |
中文關鍵詞: | 積體電路 、實驗設計 、機器學習 、啟發式演算法 |
外文關鍵詞: | integrated circuit, design of experiment, machine learning, heuristic algorithm |
相關次數: | 點閱:21 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著半導體技術持續朝向高效能與更微小製程節點發展,積體電路(IC)製造流程的複雜性也大幅提升。隨著電晶體不斷微型化,製程步驟顯著增加,對製程波動與缺陷的敏感度也同步提高,導致維持製程穩定性與達成理想良率成為當前先進製程中的關鍵挑戰。為此,本研究提出一套輕量化的整合式優化框架DOE-ML-HA,整合實驗設計(Design of Experiment, DOE)、機器學習(Machine Learning, ML)與啟發式演算法(Heuristic Algorithm, HA)等多項技術,形成一套系統性的解決方法。此框架具備以最少實驗次數建構預測模型的能力。本研究將 DOE-ML-HA 框架應用於優化IC半導體製造製程中醫療設備的電阻特性。成功辨識出最佳製程參數設定,將電阻值由 191.1 × 10⁻³ Ω改善至 176.84 × 10⁻³ Ω,接近目標值 176.5 × 10⁻³ Ω。此外,該框架亦有效降低 DRAM 元件中五種 Ti 薄膜厚度的電阻偏差,分別改善了 86.8%、94.1%、95.9%、98.2% 與 98.8%。本框架具備於資源受限及低功耗運算平台上運行的能力,可實現製程參數的即時動態調整,使 IC 製造商能夠迅速應對製程變異並有效提升產品品質。
As semiconductor technology continues to evolve toward higher performance and smaller feature sizes, the complexity of integrated circuit (IC) fabrication processes has escalated significantly. The ongoing miniaturization of transistors had introduced additional processing steps and heightened sensitivity to process fluctuations and defects, presenting critical challenges in maintaining process stability and achieving desirable yield outcomes. In response to these issues, this study introduced a lightweight integrated optimization framework, referred to as DOE-ML-HA, which integrates design of experiment (DOE), machine learning (ML), and heuristic algorithm (HA) into a cohesive methodology. The proposed framework was capable of developing predictive models using a minimal number of experimental runs. This study applied the DOE-ML-HA framework to optimize resistance characteristics of medical devices within IC semiconductor manufacturing processes. The framework successfully identified the optimal set of process parameters, reducing the resistance from 191.1 × 10⁻³ Ω to 176.84 × 10⁻³ Ω, closely approaching the target value of 176.5 × 10⁻³ Ω. Furthermore, it effectively minimized resistance deviations across five Ti thin film thicknesses in DRAM components, achieving improvements of 86.8%, 94.1%, 95.9%, 98.2%, and 98.8%, respectively. The framework was capable of operating on resource-constrained and low-power computing platforms, enabling real-time dynamic adjustment of process parameters. This capability allowed IC manufacturers to react quickly to process variations and significantly enhance product quality.
[1] Tonoy, A. A. R., Ahmed, M., & Khan, M. R. (2025). Precision mechanical systems in semiconductor lithography equipment design and development. American Journal of Advanced Technology and Engineering Solutions, 1(1), 71-97. https://doi.org/10.63125/j6tn8727
[2] Shintake, T., & Naulleau, P. (2025). Low-cost energy-efficient EUV lithography for advanced semiconductor manufacturing. Nature Reviews Electrical Engineering, 1-2. https://doi.org/10.1038/s44287-024-00129-3
[3] Liu, P., Huang, L., Zheng, C., Bao, Y., Gao, D., & Zhou, G. (2025). Spin coating in semiconductor lithography: Advances in modeling and future prospects. Microelectronic Engineering, 298, 112326. https://doi.org/10.1016/j.mee.2025.112326
[4] Lee, M., Weng, M. H., & Jang, S. L. (2025). The competitiveness and future challenge of the Taiwan semiconductors industry. In Technology Rivalry Between the USA and China (pp. 161-206). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-76169-0_6
[5] Larrosa, J. M. (2025). Emerging Paradigms in VLSI and Semiconductor Manufacturing Leveraging AI-Driven Process Control and Defect Detection Techniques. ISCSITR - International Journal of Data Analytics (ISCSITR-IJCSE), 6(1), 1–12. https://iscsitr.com/index.php/ISCSITR-IJCSE/article/view/ISCSITR-IJCSE_2025_06_01_001
[6] Friedrich, M., Schlosser, T., & Kowerko, D. (2025). Simulation of semiconductor wafer dicing induced faults on chips and their application as augmentation method for a deep learning based visual inspection system. Journal of Intelligent Manufacturing, 1-24. https://doi.org/10.1007/s10845-024-02559-0
[7] Jou, Y. T., Putra, V. P., Silitonga, R. M., Sukwadi, R., & Inderawati, M. M. W. (2025). Enhancing Integrated Circuit Quality Control: A CNN-Based Approach for Defect Detection in Scanning Acoustic Tomography Images. Processes, 13(3), 683. https://doi.org/10.3390/pr13030683
[8] Wei, X. (2025). The application of the optimized genetic algorithm in SerDes circuit design. Microelectronics Journal, 156, 106509. https://doi.org/10.1016/j.mejo.2024.106509
[9] Lv, L., Wu, Z., Zhang, L., Gupta, B. B., & Tian, Z. (2022). An edge-AI based forecasting approach for improving smart microgrid efficiency. IEEE Transactions on Industrial Informatics, 18(11), 7946-7954. https://doi.org/10.1109/TII.2022.3163137
[10] Surianarayanan, C., Lawrence, J. J., Chelliah, P. R., Prakash, E., & Hewage, C. (2023). A survey on optimization techniques for edge artificial intelligence (AI). Sensors, 23(3), 1279. https://doi.org/10.3390/s23031279
[11] Lin, W., Adetomi, A., & Arslan, T. (2021). Low-power ultra-small edge AI accelerators for image recognition with convolution neural networks: Analysis and future directions. Electronics, 10(17), 2048. https://doi.org/10.3390/electronics10172048
[12] Santhosh, R., Sut, D. J., Uma, M., & Sethuramalingam, P. (2024). Optimizing IRB1410 industrial robot painting processes through Taguchi method and fuzzy logic integration with machine learning. International Journal of Intelligent Robotics and Applications, 8(2), 380-400. https://doi.org/10.1007/s41315-024-00325-2
[13] Razavi, S. M., Sadollah, A., & Al-Shamiri, A. K. (2022). Prediction and optimization of electrical conductivity for polymer-based composites using design of experiment and artificial neural networks. Neural Computing and Applications, 34(10), 7653-7671. https://doi.org/10.1007/s00521-021-06798-7
[14] Kumaraswamy, J., Ashok, A. S., Shankar, N. B., & Praveen, S. R. (2024). Machine learning and Taguchi techniques for predicting wear mechanisms of Ni–Cu alloy composites. Results in Surfaces and Interfaces, 17, 100307. https://doi.org/10.1016/j.rsurfi.2024.100307
[15] Stamatis, D. H. (2003). Failure mode and effect analysis: FMEA from theory to execution. Quality Press.
[16] Sharma, K. D., & Srivastava, S. (2018). Failure mode and effect analysis (FMEA) implementation: a literature review. Journal of Advance Research in Aeronautics and Space Science, 5(1), 1-17. https://www.researchgate.net/publication/333209894
[17] Liu, P., Shen, M., & Geng, Y. (2023). Risk assessment based on failure mode and effects analysis (FMEA) and WASPAS methods under probabilistic double hierarchy linguistic term sets. Computers & Industrial Engineering, 186, 109758. https://doi.org/10.1016/j.cie.2023.109758
[18] ul Hassan, F., Nguyen, T., Le, T., & Le, C. (2023). Automated prioritization of construction project requirements using machine learning and fuzzy Failure Mode and Effects Analysis (FMEA). Automation in Construction, 154, 105013. https://doi.org/10.1016/j.autcon.2023.105013
[19] Tang, Y., Sun, Z., Zhou, D., & Huang, Y. (2024). Failure mode and effects analysis using an improved pignistic probability transformation function and grey relational projection method. Complex & Intelligent Systems, 10(2), 2233-2247. https://doi.org/10.1007/s40747-023-01268-0
[20] Yousaf, M. U., Aized, T., Shabbir, A., Ahmad, M., & Nabi, H. Z. (2023). Automobile rear axle housing design and production process improvement using Failure Mode and Effects Analysis (FMEA). Engineering Failure Analysis, 154, 107649. https://doi.org/10.1016/j.engfailanal.2023.107649
[21] Phadke, M. S. (1995). Quality engineering using robust design. Prentice Hall PTR.
[22] Fowlkes, W. Y., & Creveling, C. M. (1995). Engineering Methods for Robust Product Design. Reading, MA: Addison-Wesley.
[23] Su, C. T. (2013). Quality engineering: off-line methods and applications. CRC Press.
[24] Ross, P. J. (1988). Taguchi techniques for quality engineering: loss function, orthogonal experiments, parameter and tolerance design. New York, NY: McGraw-Hill.
[25] Sun, J., & Kainz, J. (2023). Optimization of hybrid pulse power characterization profile for equivalent circuit model parameter identification of Li-ion battery based on Taguchi method. Journal of Energy Storage, 70, 108034. https://doi.org/10.1016/j.est.2023.108034
[26] Antoniou, S., Kapsalis, S., Panagiotou, P., & Yakinthos, K. (2023). Parametric investigation of leading-edge slats on a blended-wing-body UAV using the Taguchi method. Aerospace, 10(8), 720. https://doi.org/10.3390/aerospace10080720
[27] Garud, K. S., Jeong, S., & Lee, M. Y. (2023). Computational fluid dynamics based Taguchi analysis on shear stress in microfluidic cerebrovascular channels. International Journal for Numerical Methods in Biomedical Engineering, 39(7), e3733. https://doi.org/10.1002/cnm.3733
[28] Kruzel, R., Dembiczak, T., & Wachowicz, J. (2023). Optimization of Spark Plasma Sintering Technology by Taguchi Method in the Production of a Wide Range of Materials. Materials, 16(16), 5539. https://doi.org/10.3390/ma16165539
[29] Kroese, D. P., Brereton, T., Taimre, T., & Botev, Z. I. (2014). Why the Monte Carlo method is so important today. Wiley Interdisciplinary Reviews: Computational Statistics, 6(6), 386-392. https://doi.org/10.1002/wics.1314
[30] Zhang, C., Shen, H., Tao, P., Zhang, Y., & Han, G. (2024). Electric vehicle charging pile capacity planning based on normal distribution Monte Carlo sampling model. International Journal of Emerging Electric Power Systems, 25(2), 189-196. https://doi.org/10.1515/ijeeps-2022-0250
[31] Ampadu, S., Mensah, E. T., Aidoo, E. N., Boateng, A., & Maposa, D. (2024). A comparative study of error distributions in the GARCH model through a Monte Carlo simulation approach. Scientific African, 23, e01988. https://doi.org/10.1016/j.sciaf.2023.e01988
[32] Langenbucher, A., Szentmáry, N., Cayless, A., Bolz, M., Hoffmann, P., & Wendelstein, J. (2024). Prediction of spectacle refraction uncertainties with discrete IOL power steps and manufacturing tolerances according to ISO using a Monte Carlo model. British Journal of Ophthalmology, 108(6), 793-800. https://doi.org/10.1136/bjo-2023-323921
[33] Yelleni, S. H., Kumari, D., & Srijith, P. K. (2024). Monte Carlo DropBlock for modeling uncertainty in object detection. Pattern Recognition, 146, 110003. https://doi.org/10.1016/j.patcog.2023.110003
[34] Rosenblatt, F. (1962). Principles of neurodynamics: Perceptrons and the theory of brain mechanisms. Spartan Books.
[35] Stern, H. S. (1996). Neural networks in applied statistics. Technometrics, 38(3), 205-214. https://doi.org/10.1080/00401706.1996.10484497
[36] McClelland, J. L., & Rumelhart, D. E. (1989). Explorations in parallel distributed processing: A handbook of models, programs, and exercises. MIT press.
[37] Fausett, L. (1994). Fundamentals of Neural Networks: An Architecture, Algorithms, and Applications. Prentice Hall.
[38] Hagan, M. T., Demuth, H. B., & Beale, M. (1997). Neural network design. PWS Publishing Co.
[39] Matera, N., Mazzeo, D., Baglivo, C., & Congedo, P. M. (2023). Hourly forecasting of the photovoltaic electricity at any latitude using a network of artificial neural networks. Sustainable Energy Technologies and Assessments, 57, 103197. https://doi.org/10.1016/j.seta.2023.103197
[40] Azgomi, H., Haredasht, F. R., & Motlagh, M. R. S. (2023). Diagnosis of some apple fruit diseases by using image processing and artificial neural network. Food Control, 145, 109484. https://doi.org/10.1016/j.foodcont.2022.109484
[41] Calisir, T., Colak, A. B., Aydin, D., Dalkilic, A. S., & Baskaya, S. (2023). Artificial neural network approach for investigating the impact of convector design parameters on the heat transfer and total weight of panel radiators. International Journal of Thermal Sciences, 183, 107845. https://doi.org/10.1016/j.ijthermalsci.2022.107845
[42] Lingamdinne, L. P., Amelirad, O., Koduru, J. R., Karri, R. R., Chang, Y. Y., Dehghani, M. H., & Mubarak, N. M. (2023). Functionalized bentonite for removal of Pb (II) and As (V) from surface water: Predicting capability and mechanism using artificial neural network. Journal of Water Process Engineering, 51, 103386. https://doi.org/10.1016/j.jwpe.2022.103386
[43] Goldberg, D.E. (1989). Genetic algorithm in search, optimization and machine learning. Addison-Wesley.
[44] Renders, J. M., & Flasse, S. P. (1996). Hybrid methods using genetic algorithms for global optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 26(2), 243-258. https://doi.org/10.1109/3477.485836
[45] Neumann, A., Hajji, A., Rekik, M., & Pellerin, R. (2024). Genetic algorithms for planning and scheduling engineer-to-order production: A systematic review. International Journal of Production Research, 62(8), 2888-2917. https://doi.org/10.1080/00207543.2023.2237122
[46] Altarabichi, M. G., Nowaczyk, S., Pashami, S., & Sheikholharam Mashhadi, P. (2023, July). Fast Genetic Algorithm for feature selection—A qualitative approximation approach. In Proceedings of the Companion Conference on Genetic and Evolutionary Computation (GECCO 2023) (pp. 11–12). ACM. https://doi.org/10.1145/3583133.3595823
[47] Aziz, R. M., Mahto, R., Goel, K., Das, A., Kumar, P., & Saxena, A. (2023). Modified genetic algorithm with deep learning for fraud transactions of ethereum smart contract. Applied Sciences, 13(2), 697. https://doi.org/10.3390/app13020697
[48] Ghezelbash, R., Maghsoudi, A., Shamekhi, M., Pradhan, B., & Daviran, M. (2023). Genetic algorithm to optimize the SVM and K-means algorithms for mapping of mineral prospectivity. Neural Computing and Applications, 35(1), 719-733. https://doi.org/10.1007/s00521-022-07766-5
[49] SEMI. (2023). SEMI E10: Specification for equipment reliability, availability, and maintainability metrics. Semiconductor Equipment and Materials International.
[50] VDI/VDE. (2016). Reference architecture model Industrie 4.0 (RAMI 4.0). Verein Deutscher Ingenieure.
[51] International Society of Automation. (2010). ISA-95: Enterprise-control system integration. ISA.
[52] Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge computing: Vision and challenges. IEEE Internet of Things Journal, 3(5), 637–646. https://doi.org/10.1109/JIOT.2016.2579198
[53] Zhai, W., Han, Q., Chen, L., & Shi, X. (2024, December). Explainable AutoML (XAutoML) with adaptive modeling for yield enhancement in semiconductor smart manufacturing. In 2024 2nd International Conference on Artificial Intelligence and Automation Control (AIAC) (pp. 162–171). IEEE. https://doi.org/10.1109/AIAC63745.2024.10899729
[54] OPC Foundation. (2021). OPC Unified Architecture Specification (Version 1.05).
[55] Lee, J., Davari, H., Singh, J., & Pandhare, V. (2018). Industrial artificial intelligence for Industry 4.0-based manufacturing systems. Manufacturing Letters, 18, 20–23. https://doi.org/10.1016/j.mfglet.2018.09.002
[56] Belkhiria, M., Jallouli, H., Bajahzar, A., Echouchene, F., & Belmabrouk, H. (2024). Optimization of electrothermal response of GAAFET using Taguchi's approach and an artificial neural network. Case Studies in Thermal Engineering, 54, 104047. https://doi.org/10.1016/j.csite.2024.104047
[57] Chen, W. H., Wu, D. R., Chang, M. H., Rajendran, S., Ong, H. C., & Lin, K. Y. A. (2024). Modeling of hydrogen separation through Pd membrane with vacuum pressure using Taguchi and machine learning methods. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2024.08.204
[58] Ping-Hung, W., Lin, S. Z., Yuan-Teng, C., Yu-Wei, L., & Ssu-Han, C. (2024). A self-training-based system for die defect classification. Mathematics, 12(15), 2415. https://doi.org/10.3390/math12152415
[59] Gao, B., & Zhou, Y. (2024). In-field experimental study and multivariable analysis on a PEMFC combined heat and power cogeneration for climate-adaptive buildings with Taguchi method. Energy Conversion and Management, 301, 118003. https://doi.org/10.1016/j.enconman.2023.118003.
[60] Xie, J., Qiao, Y., Wang, Z. A., Qi, Y., Xu, Q., Shemtov-Yona, K., ... & Rittel, D. (2024). Application of the Taguchi method to areal roughness-based surface topography control by waterjet treatments. Applied Surface Science Advances, 19, 100548. https://doi.org/10.1016/j.apsadv.2023.100548
[61] Tanürün, H. E. (2024). Improvement of vertical axis wind turbine performance by using the optimized adaptive flap by the Taguchi method. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 46(1), 71-90. https://doi.org/10.1080/15567036.2023.2279264
[62] Lu, G., Li, X., Wang, D., & Wang, K. (2024). Process Parameter Optimization for CO2 Laser Polishing of Fused Silica Using the Taguchi Method. Materials, 17(3), 709. https://doi.org/10.3390/ma17030709
[63] Yang, P., Wang, L., Qing, T., & Liu, Y. (2024). Multi-objective optimization of geometrical parameters of laterally perforated on silt fin by gray relation analysis based on Taguchi method. International Journal of Thermal Sciences, 196, 108705. https://doi.org/10.1016/j.ijthermalsci.2023.108705
[64] Zeng, W., & Xiao, Z. Y. (2024). Few-shot learning based on deep learning: A survey. Mathematical Biosciences and Engineering, 21(1), 679-711. https://doi.org/10.3934/mbe.2024029
[65] Huang, H. H., & Huang, Y. H. (2024). Fuzzy few-shot learning for predictive maintenance and cost-benefit analysis in semiconductor manufacturing: a case study on photomask haze. IEEE Access. https://doi.org/10.1109/ACCESS.2024.3405540
[66] Mohamed, H., Sowmyashree, M. S., Balageeta, K., Naveen, I. G., & Vijayakumari, G. (2024, December). Classification of Semiconductor Defects Using Few Shot Learning with Sythetic Minority Oversampling Technique. In 2024 4th International Conference on Mobile Networks and Wireless Communications (ICMNWC) (pp. 1-5). IEEE. https://doi.org/10.1109/ICMNWC63764.2024.10872109
[67] Kim, M., Kim, Q., Chang, K. B., Jeong, J., Lee, S., Mo, S., ... & Kim, D. S. (2024, April). A few-shot machine learning-based OCD metrology algorithm with anomaly detection and wafer-level data augmentation. In Proceedings of SPIE: Metrology, Inspection, and Process Control XXXVIII (Vol. 12955, pp. 189-196). SPIE. https://doi.org/10.1117/12.3009965
[68] Acharjee, P. K., Souliman, M. I., Freyle, F., & Fuentes, L. (2024). Development of dynamic modulus prediction model using artificial neural networks for colombian mixtures. Journal of Transportation Engineering, Part B: Pavements, 150(1), 04023038. https://doi.org/10.1061/JPEODX.PVENG-1402
[69] Liu, Y., Yang, Z., Huang, L., Zeng, W., & Zhou, Q. (2024). Anti-interference detection of mixed NOX via In2O3-based sensor array combining with neural network model at room temperature. Journal of Hazardous Materials, 463, 132857. https://doi.org/10.1016/j.jhazmat.2023.132857
[70] Mudawar, I., Darges, S. J., & Devahdhanush, V. S. (2024). Prediction technique for flow boiling heat transfer and critical heat flux in both microgravity and Earth gravity via artificial neural networks (ANNs). International Journal of Heat and Mass Transfer, 220, 124998. https://doi.org/10.1016/j.ijheatmasstransfer.2023.124998
[71] Sayed, E. T., Rezk, H., Abdelkareem, M. A., & Olabi, A. G. (2024). Artificial neural network based modelling and optimization of microalgae microbial fuel cell. International Journal of Hydrogen Energy, 52, 1015-1025. https://doi.org/10.1016/j.ijhydene.2022.12.081
[72] Sanni, O., Adeleke, O., Ukoba, K., Ren, J., & Jen, T. C. (2024). Prediction of inhibition performance of agro-waste extract in simulated acidizing media via machine learning. Fuel, 356, 129527. https://doi.org/10.1016/j.fuel.2023.129527
[73] Park, J. H., Kim, J. N., Lee, S., Kim, G. J., Lee, N., Baek, R. H., ... & Kim, Y. (2024). Current-voltage modeling of DRAM cell transistor using genetic algorithm and deep learning. IEEE Access, 12, 23881-23886. https://doi.org/10.1109/ACCESS.2024.3357241
[74] Mukhanov, L., Nikolopoulos, D. S., & Karakonstantis, G. (2020, October). Dstress: Automatic synthesis of dram reliability stress viruses using genetic algorithms. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO) (pp. 298-312). IEEE. https://doi.org/10.1109/MICRO50266.2020.00035
[75] Leu, Y., Lin, C. M., & Yang, W. N. (2021). Reducing Thickness Deviation of W-Shaped Structures in Manufacturing DRAM Products Using RSM and ANN_GA. IEEE Transactions on Components, Packaging and Manufacturing Technology, 11(6), 899-910. https://doi.org/10.1109/TCPMT.2021.3082419
[76] Babu, R. M., Satamraju, K. P., Gangothri, B. N., Malarkodi, B., & Suresh, C. V. (2024). A hybrid model using genetic algorithm for energy optimization in heterogeneous internet of blockchain things. Telecommunications and Radio Engineering, 83(3), 1-16. https://doi.org/10.1615/TelecomRadEng.2023050237
[77] Nigam, A., Pollice, R., Friederich, P., & Aspuru-Guzik, A. (2024). Artificial design of organic emitters via a genetic algorithm enhanced by a deep neural network. Chemical Science, 15(7), 2618-2639. https://doi.org/10.1039/D3SC05306G
[78] Wang, X., Zhu, H., Luo, X., Chang, S., & Guan, X. (2024). An energy dispatch optimization for hybrid power ship system based on improved genetic algorithm. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 238(2), 348-361. https://doi.org/10.1177/095765092312053
[79] Bhat, N., Barnard, A. S., & Birbilis, N. (2024). Inverse design of aluminium alloys using genetic algorithm: a class-based workflow. Metals, 14(2), 239. https://doi.org/10.3390/met14020239
[80] Ildarabadi, R., Lotfi, H., & Hajiabadi, M. E. (2024). Resilience enhancement of distribution grids based on the construction of Tie-lines using a novel genetic algorithm. Energy Systems, 15(1), 371-401. https://doi.org/10.1007/s12667-022-00562-z
[81] Lin, C. M., & Chen, S. L. (2024). Improving Ti Thin Film Resistance Deviations in Physical Vapor Deposition Sputtering for Dynamic Random-Access Memory Using Dynamic Taguchi Method, Artificial Neural Network and Genetic Algorithm. Mathematics, 12(17), 2688. https://doi.org/10.3390/math12172688
[82] Lin, C. M., & Chen, S. L. (2024). FMEA-TSTM-NNGA: a novel optimization framework integrating failure mode and effect analysis, the Taguchi method, a neural network, and a genetic algorithm for improving the resistance in dynamic random access memory components. Mathematics, 12(17), 2773. https://doi.org/10.3390/math12172773