| 研究生: |
方元君 Fang, Yuan-Jyun |
|---|---|
| 論文名稱: |
四環黴素衍生物對胰腺癌細胞基質金屬蛋白酶-2之抑制研究 The Study of the Inhibition of Matrix-metalloproteinase-2 in Pancreatic Cancer by Tetracycline Analogs |
| 指導教授: |
蕭世裕
Shaw, Shyh-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 胰腺癌 、乙型轉型生長因子-1 、基質金屬蛋白酶-2 、強力黴素 、TMC-1 |
| 外文關鍵詞: | pancreatic cancer, TGFβ-1, MMP-2, doxycycline, TMC-1 |
| 相關次數: | 點閱:122 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
胰腺癌(Pancreatic cancer)大多發生在已開發的國家,2012年全球胰腺癌死亡率名列所有癌症的第七名,五年後的存活率僅有5%。這麼高的死亡率是因為Pancreatic cancer的轉移作用會造成其他器官病變導致有效診斷和治療的困難。在癌症轉移過程中特別需要基質金屬蛋白酶( Matrix metalloproteinase, MMP)的參與和協助,許多文獻顯示癌症腫瘤中MMP表達的量比起正常細胞或是良性腫瘤來的多很多。抑制MMP在治療癌症轉移時被視為一個重要的目標。
強力黴素(Doxycycline, DOX)可以降低口腔癌細胞株中MMP-9的表達量,口腔癌細胞加入TGF-β1後,能誘導MMP-9的表達,但也可以被Dox抑制。本研究以gelatinase—MMP-2為主要的研究目標,胰腺癌細胞株PANC-1會常態性表達MMP-2,但TGF-β1亦能誘導MMP-2表現量。研究目標是探討Dox是否也能抑制胰腺癌細胞株MMP-2的表達。除了使用Dox外,也使用了拔除其抗生素活性的Dox 衍生物TMC-1,觀察不具抗生素能力的四環黴素藥物是否也能抑制MMP-2的效果。
研究結果顯示胰腺癌細胞以Dox、TMC-1處理後可以有效抑制其MMP-2的表達,在明膠蛋白酵素電泳中可以觀察到40 μg/ml 的TMC-1和Dox均能抑制PANC-1的MMP-2表達量。在侵襲試驗中觀察到兩種藥物可以均可以抑制細胞侵襲,40 μg/ml TMC-1和Dox均具有anti-invasion的能力。這些實驗都顯示出Doxycycline和TMC-1可以藉由TGFβ-1 pathway 抑制 MMP-2的表達。
Our previous study discovered that inhibition of MMP-9 expression by Doxycycline (DOX) is through interfering of TGFβ-1 pathways. In order to confirm whether DOX can inhibit another gelatinase, MMP-2, we selected pancreatic cancer cell (PANC-1) as experimental target. We not only used DOX to inhibit MMP-2 expression but also used Tetracycline analog ,TMC-1, to inhibit MMP-2 expression. We found that both Dox and TMC-1 at 40 μg/ml could inhibit the expression of MMP-2 in PANC-1. We also found both Dox and TMC-1 at 40 μg/ml show significant anti-invassion activity of PANC-1. We conclude that both Dox and TMC-1 can inhibit the expression of MMP-2 and prevent the invasion of PANC-1 cells.
1. Stewart, B. and C.P. Wild, World cancer report 2014. 2014.
2. Mierke, C.T., Physical break-down of the classical view on cancer cell invasion and metastasis. European Journal of Cell Biology, 2013. 92(3): p. 89-104.
3. Klein, G., et al., The possible role of matrix metalloproteinase (MMP)-2 and MMP-9 in cancer, e.g. acute leukemia. Critical Reviews in Oncology Hematology, 2004. 50(2): p. 87-100.
4. Chaudhary, A.K., et al., Matrix metalloproteinase and its drug targets therapy in solid and hematological malignancies: An overview. Mutation Research-Reviews in Mutation Research, 2013. 753(1): p. 7-23.
5. 陳和儒, 四環黴素類藥物抑制基質金屬蛋白酶表現和癌細胞生長研究. 2011, 成功大學.
6. 林志強, 四環黴素抑制口腔鱗狀癌細胞內基質金屬蛋白酶-9表現量之抑制機制的研究. 2013, 成功大學.
7. Fund, W.C.R. and A.I.f.C. Research, Food, Nutrition, Physical Activity, and the Prevention of Cancer: A Global Perspective. 2007: American Institute for Cancer Research.
8. Stewart, B.W. and C.P. Wild, World Cancer Report 2014. 2014: IARC Press.
9. John, A. and G. Tuszynski, The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis. Pathol Oncol Res, 2001. 7(1): p. 14-23.
10. Beaudeux, J.L., et al., Matrix metalloproteinases, inflammation and atherosclerosis: therapeutic perspectives. Clinical Chemistry and Laboratory Medicine, 2004. 42(2): p. 121-131.
11. Chaudhary, A.K., et al., Genetic polymorphisms of matrix metalloproteinases and their inhibitors in potentially malignant and malignant lesions of the head and neck. Journal of Biomedical Science, 2010. 17.
12. Hernandez-Barrantes, S., et al., Differential Roles of TIMP-4 and TIMP-2 in Pro-MMP-2 Activation by MT1-MMP. Biochemical and Biophysical Research Communications, 2001. 281(1): p. 126-130.
13. Cavalheiro, B.G., C.R. Junqueira, and L.G. Brandao, Expression of matrix metalloproteinase 2 (MMP-2) and tissue inhibitor of metalloproteinase 2 (TIMP-2) in medullary thyroid carcinoma: prognostic implications. Thyroid, 2008. 18(8): p. 865-71.
14. Liu, Z., et al., Increased expression of MMP9 is correlated with poor prognosis of nasopharyngeal carcinoma. BMC cancer, 2010. 10(1): p. 270.
15. Gong, Y., U.D. Chippada-Venkata, and W.K. Oh, Roles of matrix metalloproteinases and their natural inhibitors in prostate cancer progression. Cancers, 2014. 6(3): p. 1298-1327.
16. Shen, L.C., et al., Anti-invasion and anti-tumor growth effect of doxycycline treatment for human oral squamous-cell carcinoma--in vitro and in vivo studies. (1879-0593 (Electronic)).
17. Serra, R., Transforming Growth Factor Beta: Role in Cell Growth and Differentiation. eLS.
18. de Larco Je Fau - Todaro, G.J. and G.J. Todaro, Growth factors from murine sarcoma virus-transformed cells. (0027-8424 (Print)).
19. Singh, P., J.D. Wig, and R. Srinivasan, The Smad family and its role in pancreatic cancer. Indian J Cancer, 2011. 48(3): p. 351-60.
20. Moustakas, A. and C.H. Heldin, The regulation of TGFbeta signal transduction. (1477-9129 (Electronic)).
21. de Winter, J.P., et al., DPC4 (SMAD4) mediates transforming growth factor-beta1 (TGF-beta1) induced growth inhibition and transcriptional response in breast tumour cells. (0950-9232 (Print)).
22. Derynck, R. and Y.E. Zhang, Smad-dependent and Smad-independent pathways in TGF-beta family signalling. (1476-4687 (Electronic)).
23. Wiercinska, E., et al., The TGF-β/Smad pathway induces breast cancer cell invasion through the up-regulation of matrix metalloproteinase 2 and 9 in a spheroid invasion model system. Breast Cancer Research and Treatment, 2011. 128(3): p. 657-666.
24. Ellenrieder, V., et al., TGF-beta-induced invasiveness of pancreatic cancer cells is mediated by matrix metalloproteinase-2 and the urokinase plasminogen activator system. (0020-7136 (Print)).
25. Smilack, J.D., The Tetracyclines. Mayo Clinic Proceedings, 1999. 74(7): p. 727-729.
26. Sapadin, A.N. and R. Fleischmajer, Tetracyclines: Nonantibiotic properties and their clinical implications. Journal of the American Academy of Dermatology. 54(2): p. 258-265.
27. Wilcox, J.R., D.S. Covington, and N. Paez, Doxycycline as a Modulator of Inflammation in Chronic Wounds. Wounds-a Compendium of Clinical Research and Practice, 2012. 24(12): p. 339-349.
28. Nelson, M.L., Chemical and biological dynamics of tetracyclines. (0895-9374 (Print)).
29. Golub Lm Fau - Lee, H.M., et al., Minocycline reduces gingival collagenolytic activity during diabetes. Preliminary observations and a proposed new mechanism of action. (0022-3484 (Print)).
30. Evan Ap Fau - Mong, S.A., et al., The effect of alloxan, and alloxan-induced diabetes on the kidney. (0003-276X (Print)).
31. Golub, L.M., et al., Tetracyclines Inhibit Connective Tissue Breakdown: New Therapeutic Implications for an Old Family of Drugs. Critical Reviews in Oral Biology & Medicine, 1991. 2(3): p. 297-321.
32. Shen, L.-C., et al., Anti-invasion and anti-tumor growth effect of doxycycline treatment for human oral squamous-cell carcinoma – In vitro and in vivo studies. Oral Oncology, 2010. 46(3): p. 178-184.
33. Fife, R.S., et al., Effects of doxycycline on human prostate cancer cells in vitro. Cancer Letters, 1998. 127(1): p. 37-41.
34. Fife, R.S. and G.W. Sledge, Effects of Doxycycline on Cancer Cells in Vitro and in Vivo. Advances in Dental Research, 1998. 12(1): p. 94-96.
35. Wang-Gillam, A., et al., Anti-tumor effect of doxycycline on glioblastoma cells. Journal of Cancer Molecules, 2007. 3(5): p. 147-153.
36. BL, L., et al., - Inhibition of cell proliferation, invasion, tumor growth and metastasis by an. - Int J Cancer. 2002 Mar 10;98(2):297-309., (- 0020-7136 (Print)): p. - 297-309.
37. LM, G., et al., - Tetracyclines inhibit connective tissue breakdown: new therapeutic implications. - Crit Rev Oral Biol Med. 1991;2(3):297-321., (- 1045-4411 (Print)): p. - 297-321.
38. Son, K., et al., Doxycycline Induces Apoptosis in PANC-1 Pancreatic Cancer Cells. Anticancer Research, 2009. 29(10): p. 3995-4003.
39. Golub, L.M., et al., Tetracyclines inhibit connective tissue breakdown: new therapeutic implications for an old family of drugs. Crit Rev Oral Biol Med, 1991. 2(3): p. 297-321.
校內:2022-09-15公開