簡易檢索 / 詳目顯示

研究生: 洪偉峰
Hong, Wei-Feng
論文名稱: 水冷式質子交換膜燃料電池堆設計及性能測試
Design and Performance Test of a Water-Cooled PEMFC Stack
指導教授: 賴維祥
Lai, Wei-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 148
中文關鍵詞: 質子交換膜燃料電池電池堆設計水冷式性能曲線電化學阻抗
外文關鍵詞: Proton exchange membrane fuel cell (PEMFC), Stack design, Water-cooled, Polarization curve, Impedance analysis
相關次數: 點閱:142下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前大型PEMFC電堆商業化仍存在諸多技術課題,而妥善的熱管理策略即為其中之一。電堆於高負載時會釋放出大量的熱能,如果無法適當得進行散熱,易造成薄膜內部整體或局部過乾的情況。本論文自行設計開發五級水冷式PEMFC電堆,於設計階段即先行利用ANSYS CFX套裝軟體進行初步的流道散熱效果比較。本研究著重於電池堆成品開發後之實體運轉測試,針對氣體流率、水溫、水流率、溫度分佈等參數,討論對於電池堆性能與阻抗的影響,根據模擬分析得到的結果進行定性化的檢視,選擇溫度分佈均勻性最佳者做為水冷式電池堆開發之用。實驗結果顯示,增加水溫對於提升電池堆的性能有實質上的幫助,因為能提升電化學反應速率。而水流率2 L/min、水溫65 ℃、氫氣計量比1.5、空氣計量比2.5的條件下能使該電池堆發揮最佳的性能。電池堆外圍溫度分佈與出入口水溫差會明顯地隨著負載變化而有所增減。低流率l L/min的操作下,電堆外圍約靠近第3、4級電池的位置會明顯出現高溫區,而且出入口水溫差會將近6 ℃;將流率增加後,即可有效降低電池堆外圍高溫區所涵蓋的面積。另外,提高電池堆溫度,歐姆阻抗 ( ROhm ) 會隨之增加,但於高電流操作時,此現象不明顯。同時,質傳阻抗與電荷轉移阻抗 ( Rct+Rmt ) 隨溫度提高而下降;提高操作電流則使此現象更趨明顯,此現象可歸因於較多之生成水。

    There are several technical obstructions to overcome for the commercialization of PEMFCs. One of the most critical issues is the water and thermal management which has been considered a key factor to an uniform electrochemical reaction and a proper water content in the MEA. There is a considerable amount of heat while operating a stack, especially at a high current density. The waste heat could lead to dehydration of the MEA locally or globally if an improper thermal management.
    In this work, a 5-cell liquid-cooled PEMFC stack was designed and developed. In the beginning process of stack design, ANSYS CFX simulation is adopted. Our primary mission focuses on the investigation of stack characteristics, including stack performance and impedance analysis in terms of gas stoichiometric ratio, gas humidification, cooling water temperatures and cooling water flow rates, A cooling plate pattern with the best temperature distribution is selected according to our simulate qualitative analysis. The experiment results show that increasing the cooling water temperature significantly raising the stack performance due to an increase of the rate of electrochemical reaction. The 5-cell water-cooled PEMFC stack exhibited the best performance at a water flow rate of 2 L/min, a water temperature of 65 oC, an air stoichiometric ratio of 2.5 and a hydrogen stoichiometric ratio of 1.5. The outside temperature distribution of the stack and the temperature difference between inlet and outlet water change as the output load changes. At a water flow rate of 1 L/min, a higher temperature was observed at a position close to the 3rd and 4th cells. At this condition, the temperature difference between inlet and outlet water is about 6 oC. However ,the area affected by the local high temperature can be reduced effectively by increasing the water flow rate. Increasing the stack temperature increases the Ohmic resistance, but decreases the sum of charge transfer resistance and mass transfer resistance. In addition, the phenomenon of resistance raise becomes less significant for ROhm but more significant for Rct+Rmt at a higher current. This can be attributed to more amount of generated water.

    中文摘要 I Abstract II 誌謝 IV 目錄 V 表目錄 VIII 圖目錄 IX 符號 XIII 第1章 緒論 1 1-1 前言 1 1-2 研究動機 5 1-3 文獻回顧 7 1-4 研究目的 15 第2章 燃料電池基本原理 16 2-1 燃料電池簡介 16 2-2 質子交換膜燃料電池基本構造 17 2-2-1 膜電極組(Membrane Electrode Assembly, MEA) 18 2-2-2 氣體擴散層(Gas Diffusion Layer, GDL) 19 2-2-3 電極觸媒層(Catalyst Layer) 20 2-2-4 質子交換膜 20 2-2-5 氣密墊片 22 2-2-6 石墨流道板 22 2-2-6 集電板 23 2-2-7 端板 23 2-3 質子交換膜燃料電池運作原理 23 第3章 實驗設備 26 3-1 燃料電池堆規格 27 3-1-1 水冷式燃料電池堆外觀 27 3-1-2 電池堆組件圖 29 3-2 簡易型水冷散熱設備 35 3-2-1 110 V 溫控箱與電阻式加熱鍋 36 3-2-2 耐溫泵浦 37 3-2-3 浮子式流量計 38 3-2-4 熱電偶與溫度擷取器 39 3-3 燃料電池測試平台 42 3-3-1 燃料供應系統 44 3-3-2 增濕系統 45 第4章 實驗與研究方法 46 4-1 數值模擬與分析 46 4-1-1 統御方程式 47 4-1-2 幾何模型與參數設定 48 4-1-3 邊界條件設定 50 4-2 極化曲線 54 4-2-1 活化過電位 56 4-2-2 歐姆過電位 57 4-2-3 濃度過電位 58 4-3 電化學阻抗頻譜分析 58 4-4 水冷式燃料電池堆外圍溫度量測 62 4-5 實驗矩陣與參數設定 65 4-5-1 陰陽極燃料增濕設定 65 4-5-2 交流阻抗頻譜分析設定 67 4-5-3 實驗矩陣 68 4-5-4 實驗步驟 70 4-6 散熱效率計算 71 第5章 結果與討論 74 5-1 流道板數值模擬 75 5-1-1 水流率2.13×10-5 L/min,流道(A)、(B)與(C)之散熱效果比較 75 5-1-2 水流率2.13×10-5 L/min,流道(D)與(E)之散熱效果比較 76 5-1-3 水流率4.3×10-5 L/min,流道(A)、(B)與(C)之散熱效果比較 77 5-1-4 水流率4.3×10-5 L/min,流道(D)與(E)之散熱效果比較 77 5-2 陰陽極氣體計量比對燃料電池堆性能的影響 82 5-2-1 陽極計量比對燃料電池堆性能的影響 82 5-2-2 陰極計量比對燃料電池堆性能的影響 83 5-3 入口水流率對電池堆特性分析 87 5-3-1 入口水流率對電池堆性能之影響 87 5-3-2 入口水流率對電池堆外圍溫度分佈之影響 99 5-4 入口水溫對電池堆特性分析 113 5-4-1 入口水溫對電池堆性能之影響 113 5-4-2 入口水溫對電池堆與各級電池阻抗之影響 121 5-5 散熱效率 138 第6章 結論與未來工作 140 6-1 結論 140 6-2 未來工作 142 參考文獻 143

    1.Corbo, P., Migliardini, F., and Veneri, O., "An experimental study of a PEM fuel cell power train for urban bus application," Journal of Power Sources, 2008, Vol. 181, pp.363-370.

    2.Van Dokkum, J., and Dasinger, A., "Meeting the challenges in the transport sector," Journal of Power Sources, 2008, Vol. 181, pp.378-381.

    3.Corbo, P., Migliardini, F., and Veneri, O., "PEFC stacks as power sources for hybrid propulsion systems," International Journal of Hydrogen Energy, 2009, Vol. 34, pp.4635-4644.

    4.Corbo, P., Migliardini, F., and Veneri, O., "Experimental analysis and management issues of a hydrogen fuel cell system for stationary and mobile application," Energy Conversion and Management, 2007, Vol. 48, pp.2365-2374.

    5.Ferraro, M., Sergi, F., Brunaccini, G., Dispenza, G., Andaloro, L., and Antonucci, V., "Demonstration and development of a polymer electrolyte fuel cell system for residential use," Journal of Power Sources, 2009, Vol. 193, pp.342-348.

    6.Squadrito, G., Giacoppo, G., Barbera, O., Urbani, F., Passalacqua, E., Borello, L., Musso, A., and Rosso, I., "Design and development of a 7kW polymer electrolyte membrane fuel cell stack for UPS application," International Journal of Hydrogen Energy, 2010, Vol. 35, pp.9983-9989.

    7.Radulescu, M., Lottin, O., Feidt, M., Lombard, C., Noc, D.L., and Doze, S.L., "Experimental results with a natural gas cogeneration system using a polymer exchange membrane fuel cell," Journal of Power Sources, 2006, Vol. 159, pp.1142-1146.

    8.Hwang, J.J., and Zou, M.L., "Development of a proton exchange membrane fuel cell cogeneration system," Journal of Power Sources, 2010, Vol. 195, pp.2579-2585.

    9.Briguglio, N., Ferraro, M., Brunaccini, G., and Antonucci, V., "Evaluation of a low temperature fuel cell system for residential CHP," International Journal of Hydrogen Energy, 2011, Vol. 36, pp.8023-8029.

    10.Larminie, J., and Dicks, A., Fuel Cell Systems Explained. 2nd ed., John Wiley & Sons Ltd, 2003.

    11.Vielstich, W., Lamm, A., and Gasteiger, H.A., Handbook of Fuel Cells : Fundamentals Technology and Applications, John Willy & Sons Ltd, 2003.

    12.Zhang, G., and Kandlikar, S.G., "A critical review of cooling techniques in proton exchange membrane fuel cell stacks," International Journal of Hydrogen Energy, 2012, Vol. 37, pp.2412-2429.

    13.Yan, X.Q., Hou, M., Sun, L.Y., Cheng, H.B., Hong, Y. L., Liang, D., Shen, Q., Ming, P.W., and Yi, B.L., "The study on transient characteristic of proton exchange membrane fuel cell stack during dynamic loading," Journal of Power Sources, 2007, Vol. 163, pp.966-970.

    14.Adzakpa, K.P., Ramousse, J., Dubé, Y., Akremi, H., Agbossou, K., Dostie, M., Poulin, A., and Fournier, M., "Transient air cooling thermal modeling of a PEM fuel cell," Journal of Power Sources, 2008, Vol. 179, pp.164-176.

    15.Hwang, J.J., Chang, W.R., Weng, F.B., Su, A., and Chen, C.K., "Development of a small vehicular PEM fuel cell system," International Journal of Hydrogen Energy, 2008, Vol. 33, pp.3801-3807.

    16.Wu, J., Galli, S., Lagana, I., Pozio, A., Monteleone, G., Yuan, X.Z., Martin, J., and Wang, H., "An air-cooled proton exchange membrane fuel cell with combined oxidant and coolant flow," Journal of Power Sources, 2009, Vol. 188, pp.199-204.

    17.López-Sabirón, A.M., Barroso, J., Roda, V., Barranco, J., Lozano, A., and Barreras, F., "Design and development of the cooling system of a 2 kW nominal power open-cathode polymer electrolyte fuel cell stack," International Journal of Hydrogen Energy, 2012, Vol. 37, pp.7289-7298.

    18.Hashmi, S.M.H., Cooling Strategies for PEM FC Stacks, Department of Mechanical Engineering, Helmut-Schmidt-Universität / Universität der Bundeswehr 2010, Ph.D.

    19.Shimpalee, S., Ohashi, M., Van Zee, J.W., Ziegler, C., Stoeckmann, C., Sadeler, C., and Hebling, C., "Experimental and numerical studies of portable PEMFC stack," Electrochimica Acta, 2009, Vol. 54, pp.2899-2911.

    20.Li, X., and Sabir, I., "Review of bipolar plates in PEM fuel cells: Flow-field designs," International Journal of Hydrogen Energy, 2005, Vol. 30, pp.359-371.

    21.Chen, F.C., Gao, Z., Loutfy, R.O., and Hecht, M., "Analysis of optimal heat transfer in a pem fuel cell cooling plate," John Wiley & Sons Ltd, 2003, Vol. 3, pp.181-188.

    22.Choi, J., Kim, Y.H., Lee, Y., Lee, K.J., and Kim, Y., "Numerical analysis on the performance of cooling plates in a PEFC," Journal of Mechanical Science and Technology, 2008, Vol. 22, 1417-1425.

    23.Baek, S.M., Yu, S.H., Nam, J.H., and Kim, C.J., "A numerical study on uniform cooling of large-scale PEMFCs with different coolant flow field designs," Applied Thermal Engineering, 2011, Vol. 31, pp.1427-1434.

    24.Asghari, S., Akhgar, H., and Imani, B.F., "Design of thermal management subsystem for a 5kW polymer electrolyte membrane fuel cell system," Journal of Power Sources, 2011, Vol. 196, pp.3141-3148.

    25.Cho, K.H., Lee, J., Ahn, H.S., Bejan, A., and Kim, M.H., "Fluid flow and heat transfer in vascularized cooling plates," International Journal of Heat and Mass Transfer, 2010, Vol. 53, pp.3607-3614.

    26.Cho, K.H., Chang, W.P., and Kim, M.H., "A numerical and experimental study to evaluate performance of vascularized cooling plates," International Journal of Heat and Fluid Flow, 2011, Vol. 32, pp.1186-1198.

    27.Liu, H., Li, P., and Lew, J.V., "CFD study on flow distribution uniformity in fuel distributors having multiple structural bifurcations of flow channels," International Journal of Hydrogen Energy, 2010, Vol. 35, pp.9186-9198.

    28.Liu, H., Li, P., Lew, J.V., and Juarez-Robles, D., "Experimental study of the flow distribution uniformity in flow distributors having novel flow channel bifurcation structures," Experimental Thermal and Fluid Science, 2012, Vol. 37, pp.142-153.

    29.Jeon, D.H., "Numerical study of serpentine flow-field cooling plates on PEM fuel cells performance," International Journal of Energy Research, 2011.

    30.Yu, S., and Jung, D., "Thermal management strategy for a proton exchange membrane fuel cell system with a large active cell area," Renewable Energy, 2008, Vol. 33, pp.2540-2548.

    31.Cheong, S., Kim, T., Kim, D., Lee, J., and Hwang, Y., "Analysis of water and thermal management with coolant operating conditions for a proton exchange membrane fuel cell," Current Applied Physics, 2010, Vol. 10, pp.S22-S25.

    32.林昇佃, 余子隆, 張幼珍, 翁芳柏, 李碩仁, 林育才, 吳和生, 魏榮宗, 林修正, 賴子珍, 曾盛恕, 詹世弘, "燃料電池:新世紀能源," 滄海書局, 2004.

    33.黃鎮江, "燃料電池," 全華科技圖書股份有限公司, 2003.

    34.陳宜寬, "重組氣體對高溫型質子交換膜燃料電池影響之研究", 國立成功大學航空太空工程學系碩士論文, 2012.

    35.林珈鋒, "增濕方法對質子交換膜燃料電池堆性能及阻抗影響之研究", 國立成功大學航空太空工程學系碩士論文, 2010.

    36.Lee, G.Y., Jung, M.k., Ryoo, S.N., Park, M.S., Ha, S.C., and Kim, S., "Development of cost innovative BPs for a PEMFC stack for a 1kW-class residential power generator (RPG) system," International Journal of Hydrogen Energy, 2010, Vol. 35, pp.13131-13136.

    37.陳震宇, "溫度與溼度對PBI/H3PO4燃料電池特性影響之研究", 國立成功大學航空太空工程學系博士論文, 2010.

    38.Kreuer, K.D., "On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells," Journal of Membrane Science, 2001, Vol. 185, pp.29-39.

    39.Zhang, J.L., Tang, Y.H., Song, C.J., and Zhang, J.J., "Polybenzimidazole-membrane-based PEM fuel cell in the temperature range of 120-200 degrees C," Journal of Power Sources, 2007, Vol. 172, pp.163-171.

    40.Zhu, W.H., Payne, R.U., and Tatarchuk, B.J., "PEM stack test and analysis in a power system at operational load via ac impedance," Journal of Power Sources, 2007, Vol. 168, pp.211-217.

    41.Tüber, K., Pócza, D., and Hebling, C., "Visualization of water buildup in the cathode of a transparent PEM fuel cell," Journal of Power Sources, 2003, Vol. 124, pp.403-414.

    42.Jang, J.H., Chiu, H.C., Yan, W.M., and Sun, W.L., "Effects of operating conditions on the performances of individual cell and stack of PEM fuel cell," Journal of Power Sources, 2008, Vol. 180, pp.476-483.

    43.Chen, J., and Zhou, B., "Diagnosis of PEM fuel cell stack dynamic behaviors," Journal of Power Sources, 2008, Vol. 177, pp.83-95.

    44.Koh, J.H., Hsu, A.T., Akay, H.U., and Liou, M.F., "Analysis of overall heat balance in self-heated proton-exchange-membrane fuel cells for temperature predictions," Journal of Power Sources, 2005, Vol. 144, pp.122-128.

    45.Kandlikar, S.G., and Lu, Z.J., "Thermal management issues in a PEMFC stack - A brief review of current status," Applied Thermal Engineering, 2009, Vol. 29, pp.1276-1280.

    46.黃耿彬, "陽極氣體條件對氣冷式燃料電池堆特性影響之研究", 國立成功大學航空太空工程學系碩士論文, 2011.

    47.Matian, M., Marquis, A.J., and Brandon, N.P., "Application of thermal imaging to validate a heat transfer model for polymer electrolyte fuel cells," International Journal of Hydrogen Energy, 2010, Vol. 35, pp.12308-12316.

    48.Giddey, S., Ciacchi, F.T., and Badwal, S.P.S., "Design, assembly and operation of polymer electrolyte membrane fuel cell stacks to 1 kWe capacity," Journal of Power Sources, 2004, Vol. 125, pp.155-165.

    49.Yu, S.H., Sohn, S., Nam, J.H., and Kim, C.J., "Numerical study to examine the performance of multi-pass serpentine flow-fields for cooling plates in polymer electrolyte membrane fuel cells," Journal of Power Sources, 2009, Vol. 194, pp.697-703.

    50.Inoue, G., Yoshimoto, T., Matsukuma, Y., Minemoto, M., Itoh, H., and Tsurumaki, S., "Numerical analysis of relative humidity distribution in polymer electrolyte fuel cell stack including cooling water," Journal of Power Sources, 2006, Vol. 162, pp.81-93.

    51.Park, Y.H., and Caton, J.A., "Development of a PEM stack and performance analysis including the effects of water content in the membrane and cooling method," Journal of Power Sources, 2008, Vol. 179, pp.584-591.

    52.Fox, R.W., McDonald, A.T., and Pritchard, P.J., "Introduction to FLUID MECHANICS," John Wiley & Sons, 2004.

    下載圖示 校內:2016-07-29公開
    校外:2016-07-29公開
    QR CODE