簡易檢索 / 詳目顯示

研究生: 蕭凱元
Hsiao, Kai-Yuan
論文名稱: 發展陸基增強系統之電離層異常偵測機制研究
Development of the Ionospheric Anomaly Detection Method for GBAS
指導教授: 詹劭勳
Jan, Shau-Shiun
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 87
中文關鍵詞: 全球定位系統陸基增強系統完整性監測平台即時處理電離層異常
外文關鍵詞: Global position system (GPS), ground based augmentation system (GBAS), integrity monitor test-bed (IMT), real-time process, ionospheric anomaly
相關次數: 點閱:144下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全球定位系統(global positioning system, GPS)能提供全球準確的定位、測速和高精度的時間標準。然而,在民航上的應用上,單獨使用GPS導航定位不能達到民航的導航性能需求(required navigation performance, RNP)進行進場及降落。國際民用航空組織(international civil aviation organization, ICAO)提出利用陸基增強系統(ground based augmentation system, GBAS)增強GPS的完整性(integrity)達到第一類(category I, CAT I)進場的導航服務能力。由於台灣目前並沒有GBAS建置系統,為了評估GBAS在台北飛航情報區(Taipei flight information region, Taipei FIR)運行的效能。為了未來能在台灣建置與評估GBAS,本論文發展與評估即時處理的GBAS地面設施原型,完整性監測平台(integrity monitor test-bed, IMT)。然而,台灣立處於中低緯度地區,電離層的異常變化十分頻繁,而這些將會導致GBAS在運行上的錯誤,為了能夠讓GBAS使用者能夠避免電離層劇烈變化造成的異常,本論文提出多個電離層監測機制,當偵測出電離層異常時,能夠對使用者提出警告,讓使用者能夠避免電離層異常造成的影響。本論文再經由分析各個電離層異常監測機制的優點與其限制,發展出一套電離層異常整合監測系統結合各個機制的優點。為了評估整合系統的電離層異常監測效能,本論文將會模擬不同嚴重程度的電離層異常模型並分析對於整合系統的影響程度,並使用實際接收的GPS資料驗證各個電離層異常監測機制與其整合系統的效能。最後,本論文所呈現的結果將可以提供在未來建置陸基增強系統(GBAS)於台北飛航情報區(Taipei FIR)的重要參考依據。

    Global positioning system (GPS) can provide the position, velocity and time (PVT) information for almost anywhere on Earth. However, stand-alone GPS cannot meet the real-time integrity monitoring capability necessary to meet the civil aviation navigation safety requirements. That is, stand-alone GPS cannot meet the required navigation performance (RNP) for civil aviation approaches and landings. In order to improve GPS performance and enhance its integrity, the ground-based augmentation system (GBAS) is recommended by the international civil aviation organization (ICAO) as a solution to augment GPS for category I (CAT I) approaches and landings. In order to improve the navigation service performance in the Taipei flight information region (FIR), the Taiwan civil aeronautics administration (CAA) plans to implement a GBAS in the Taipei FIR. In order to validate the GBAS design in Taiwan, in this thesis, we evaluate the real-time operation of the GBAS ground facility prototype, the integrity monitor test-bed (IMT). After the designs of the real-time GBAS ground facility prototype and the associated user platform are validated, the developed system is used as a test bed for assessing ionospheric anomalies. Since Taiwan is located in a middle and low-latitude region, anomalies due to the ionosphere are the major concern for GBAS implementation and operation. In order to help GBAS users avoid anomalies due to the ionosphere, we propose several detection methods to monitor such anomalies. Also, we need an integrated detection method to combine the advantages of each detection method. After that, if the system detects an anomaly, it will alert the GBAS users in order to avoid any negative consequences. In this thesis, we simulate different severities of the ionospheric anomaly model and analyze each corresponding effect for the detection methods that we establish. Also, we collected the real GPS data to validate the proposed integrated detection method. Finally, it was concluded that we can improve the integrity and safety of civil aviation with the GBAS in Taiwan during an ionospheric anomaly.

    摘要----------------------------------------------I Abstract-----------------------------------------II 誌謝---------------------------------------------IV 第一章 緒論---------------------------------------V 第二章 即時處理IMT-------------------------------VI 第三章 電離層監測機制---------------------------VII 第四章 結果與分析------------------------------VIII 第五章 結論與未來工作----------------------------IX Table of Contents---------------------------------X List of Tables---------------------------------XIII List of Figures---------------------------------XIV CHAPTER 1 INTRODUCTION AND OVERVIEW---------------1 1.1 Ground based augmentation system (GBAS)-------3 1.2 Integrity monitor test-bed (IMT)--------------4 1.3 Motivation and objective----------------------5 1.4 Literature review-----------------------------6 1.5 Ionospheric anomaly---------------------------8 1.6 Thesis contributions and outline--------------9 CHAPTER 2 REAL-TIME INTEGRITY MONITOR TEST-BED---10 2.1 IMT functions--------------------------------11 2.2 Hardware configuration-----------------------13 2.3 Software design------------------------------15 2.3.1 Data transmission--------------------------16 2.3.2 Data synchronization-----------------------17 2.3.3 User algorithm-----------------------------19 2.4 Interim summary------------------------------21 CHAPTER 3 IONOSPHERIC ANOMALY DETECTION METHOD---22 3.1 Ionospheric monitor station (IONOMS)---------23 3.2 GPS ionospheric delay value------------------25 3.3 Simulation of the ionospheric anomaly model--28 3.4 Ionospheric anomaly detection methods--------31 3.4.1 Code-carrier divergence (CCD) test---------31 3.4.2 Ionospheric gradient detection-------------35 3.4.3 Double difference ionospheric delay--------38 3.4.4 Cycle slip test----------------------------44 3.5 Integrated detection method------------------44 3.6 Interim summary------------------------------47 CHAPTER 4 RESULTS AND ANALYSIS-------------------48 4.1 Experiment configuration---------------------48 4.1.1 Configuration of the real-time IMT module in the static experiment--------------------------------50 4.1.2 Configuration of the real-time IMT module in the dynamic experiment-------------------------------51 4.1.3 Configuration of the real-time IMT with the IONOMS-------------------------------------------52 4.2 Experiment results---------------------------54 4.2.1 Static experiment results------------------54 4.2.2 Dynamic experiment results-----------------57 4.2.3 Experimental results for IMT with IONOMS---59 4.3 Simulation results with different severities of ionospheric anomalies----------------------------63 4.3.1 Simulation of different severities of the ionospheric anomaly model------------------------------------64 4.3.2 Simulation results-------------------------66 4.4 Experiment results for detecting ionospheric anomaly with IONOMS--------------------------------------74 4.4.1 Experiment configuration-------------------75 4.4.2 Experiment results-------------------------76 4.5 Interim summary------------------------------81 CHAPTER 5 Conclusions and future work------------82 Reference----------------------------------------84

    [1] K. D. McDonald, "GPS in civil aviation," GPS World, 1991.
    [2] Federal Aviation Administration (FAA). [Online]. Available: http://www.faa.gov.
    [3] P.-L. Normark, G. Xie, D. Akos, S. Pullen, M. Luo, J. Lee, P. Enge and B. Pervan, "The next generation integrity monitor testbed (IMT) for ground system development and validation testing," in ION GPS, 2001.
    [4] J. Lee, "GPS-based aircraft landing systems with enhanced performance : beyond accuracy," Ph.D. dissertation, Stanford University, 2005.
    [5] G. Xie, "Optimal on-airport monitoring of the integrity of GPS-based landing systems," Ph.D. dissertation, Stanford University, 2004.
    [6] M. Luo, S. Pullen, J. Zhang, S. Gleason, G. Xie, J. Yang, D. Akos, P. Enge and B. Pervan, "Development and testing of the stanford LAAS ground facility prototype," in ION National Technical Meeting, 2000.
    [7] M. Luo, S. Pullen, D. Akos, G. Xie, S. Datta-Barua, T. Walter and P. Enge, "Assessment of ionospheric impact on LAAS using WAAS supertruth data," in Proceedings of The ION 58th Annual Meeting, 2002.
    [8] P. Enge, "Local are augmentation of GPS for the precision approach of aircraft," IEEE, vol. 87, no. 1, 1999.
    [9] S.-J. Yeh, H.-C. Hsu, A.-L. Tao, Y.-C. Lin and S.-S. Jan, "GBAS algorithm performance in the implementation of the integrity monitor testbed in Taipei flight information region," in ION GNSS, 2010.
    [10] C.-Y. Jih, "Accuracy study on local area augmentation system," M.S. thesis, National Cheng Kung University, 2003.
    [11] S.-J. Yeh and S.-S. Jan, "Assessment of integrity monitoring test-bed module for the airport environment," in IEEE/ION PLANS, 2012.
    [12] H.-C. Hsu, "Implementation of a local area integrity monitoring for GPS," M.S. thesis, National Cheng Kung University, 2010.
    [13] C.-W. Lin, "Development of integrity monitoring test-bed algorithm availability simulation tool," M.S. thesis, National Cheng Kung University, 2014.
    [14] FAA Navigation Program AJM-32, "Delta makes inaugural GBAS landing in Newark," SatNavNews, vol. 54, Winter/Spring 2015.
    [15] T. A. Skidmore and F. v. Graas, "DGPS ground station integrity monitoring," in ION National Technical Meeting, 1994.
    [16] S. Khanafseh, F. Yang, B. Pervan, S. Pullen and J. Warburton, "Carrier phase ionospheric gradient ground monitor for GBAS with experimental validation," Journal of the ION, 2012.
    [17] K. Suzuki, Y. Nozaki, T. Ono, T. Yosihara, S. Saitoh and S. Fukushima, "CAT-I GBAS availability improvement through ionosphere field monitor (IFM)," in ION GNSS, 2011.
    [18] S. Fujita, T. Yoshihara and S. Saito, "Determination of ionosphere gradient in short baselines by using single frequency measurements," in Electronic Navigation Research Institute, 2010.
    [19] P. Misra and P. Enge, Global positioning system: signals, measurement, and performance, Ganga-Jamuna Press, 2001.
    [20] R. B. Langley, "Propagation of the GPS signals," in GPS for geodesy, 1998, pp. 115-149.
    [21] J. A. Klobuchar, "Design and characteristics of the GPS ionospheric time delay algorithm for single frequency users," in IEEE Position Location and Navigation Symposium, 1986.
    [22] J. Paul M. Kintner, T. E. Humphreys and J. C. Hinks, "GNSS and ionospheric scintillation: How to survive the next solar maximum," Inside GNSS, vol. 4, no. 4, 2009.
    [23] S. Saito, T. Yoshihara and Naoki Fujii, "Development of an ionospheric delay model with plasma bubbles for GBAS," in ION International Technical Meeting, 2009.
    [24] K.-Y. Hsiao and S.-S. Jan, "Evaluation of a real-time GBAS ground facility prototype and its user performance," in ION International Technical Meeting, 2015.
    [25] RTCA DO-253C, "Minimum operational performance standards for GPS local area augmentation system airborne equipment," 2008.
    [26] S. Pullen, Y. S. Park and P. Enge, "Impact and mitigation of ionospheric anomalies on ground-based augmentation of GNSS," Radio Science, vol. 44, no. 1, 2009.
    [27] R. Hatch, "The synergism of GPS code and carrier measurements," in International geodetic symposium on satellite doppler positioning, 1983.
    [28] R. E. Kalman, "A new approach to linear filtering and prediction problems," Journal of Fluids Engineering, vol. 82, no. 1, pp. 35-46, 1960.
    [29] P. J. G. Teunissen, "The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation," Journal of Geodesy, vol. 70, no. 1-2, pp. 65-82, 1995.
    [30] X.-W. Chang, X. Yang and T. Zhou, "MLAMBDA: a modified LAMBDA method for integer least-squares estimation," Journal of Geodesy, vol. 79, no. 9, pp. 552-565, 2005.
    [31] A. Leick, GPS Satellite Surveying, 3rd edition, New York: John Wiley & Sons, 2004.
    [32] S. Skone and M. De Jong, "The impact of geomagnetic substorms on GPS receiver performance," Earth, planets and space, vol. 52, no. 11, pp. 1067-1071, 2000.
    [33] SolarHam. [Online]. Available: http://www.solarham.net/planetk.htm.

    無法下載圖示 校內:2020-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE