| 研究生: |
謝景軒 Hsieh, Ching-Hsuan |
|---|---|
| 論文名稱: |
以無電鍍方法製備磁性Co-Ni/r-GO觸媒應用於硼氫化鈉水解產氫之研究 Hydrogen generation from catalyzed hydrolysis of sodium borohydride in presence of Co-Ni/r-GO catalyst prepared with electroless plating process |
| 指導教授: |
陳炳宏
Chen, Bing-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 質子交換膜燃料電池 、硼氫化鈉 、無電鍍 、氧化石墨烯 、水解反應 |
| 外文關鍵詞: | PEMFC, graphene oxide, electroless plating, sodium borohydride, hydrolysis reaction |
| 相關次數: | 點閱:121 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前,在再生能源的發展中,質子交換膜燃料電池 (PEMFC)是一種極具潛力並且值得深入研究的對象。PEMFC具有較高的能源轉換效率,而且其主要產物為水,並不會對環境造成汙染,不僅可以減緩溫室效應日益嚴重的趨勢,也可以降低人類對於化石燃料的依賴,是人類在追求永續發展的過程中一樣相當重要的能源。
在PEMFC中,氫氣的供應以及儲存方法是一個很重要的議題。相較於物理儲氫與金屬氫化物,化學氫化物被認為是最有效率的儲氫方法,因為化學氫化物的儲氫量高,產氫純度高且不需要消耗額外的能源就能到達到儲氫的目的。
其中,硼氫化鈉在化學氫化物中有較高的氫氣儲存量,大約為10.6 %,是一個備受矚目的儲氫材料;除了含氫量高之外,在一般環境下將硼氫化鈉儲存在鹼性溶液中有很好的穩定性及安全性,只要利用適當的觸媒即可催化其水解反應,釋放氫氣。
本研究中,我們致力於硼氫化鈉水解反應觸媒的研究,利用無電鍍的方法將Co金屬與Ni金屬析鍍在氧化石墨烯上,製備出質量輕且催化活性佳的Co-Ni/r-GO觸媒,並將其應用於硼氫化鈉的液相水解反應中。我們也嘗試改變實驗條件去觀察對於水解反應的影響,包括:硼氫化鈉濃度、氫氧化鈉濃度、觸媒添加量與溫度,並且從中了解到Co-Ni/r-GO觸媒催化硼氫化鈉水解反應的最佳操作條件以及動力學常數,之後進行觸媒回收實驗,測試Co-Ni/r-GO觸媒是否能夠重複的循環利用,降低製造成本。最後,利用SEM/EDS、TEM、XRD、ICP-OES進行觸媒鑑定,了解觸媒的表面型態與特殊性質,另一方面則利用11B-NMR鑑定水解反應後的產物。
Proton exchange membrane fuel cells (PEMFCs) using hydrogen as fuel are attracting much attention because of their higher energy efficiency and regarded as one of the emerging technologies in green energy. Methods of supplying hydrogen to PEMFC need to be considered. Chemical hydrides have been regarded as the most potential materials for hydrogen supply and have larger hydrogen storage capacity. Hydrogen evolution via hydrolysis reaction from NaBH4 is a promising technique, and catalysts play an important role in the hydrolysis reaction.
In this work, hydrolysis of sodium borohydride using Co-Ni/r-GO catalysts was studied. The electroless plating method was used to deposit Co-Ni nanoparticles on graphene oxide. Various instruments including SEM/EDS, TEM, OM, XRD, ICP-AES and SQUID were utilized to characterize Co-Ni/r-GO catalysts. Magnetic property of the cobalt-based catalyst makes it convenient for being recycled from spent NaBH4 solution. Also, 11B-NMR was utilized to characterize the by-product, NaBO2.
Furthermore, the rate of hydrogen generation from catalyzed hydrolysis of alkaline NaBH4 solution was determined as a function of temperature, NaBH4 concentration, NaOH concentration, and catalyst loading in the presence of as-prepared Co-Ni/r-GO catalyst. The activation energy of NaBH4 hydrolysis reaction was found at 55.12 kJ mol-1, which was comparable with others reported in the open literatures.
Amendola, S.C., Sharp-Goldman, S.L., Janjua, M.S., Spencer, N.C., Kelly, M.T., Petillo, P.J., Binder, M. A safe, portable, hydrogen gas generator using aqueous borohydride solution and Ru catalyst. International Journal of Hydrogen Energy, 25(10), 969-975, 2000.
Bose, B.K. Global energy scenario and impact of power electronics in 21st century. IEEE Transactions on Industrial Electronics, 60(7), 2638-2651, 2013.
Brodie, B.C. On the atomic weight of graphite. Philosophical Transactions of the Royal Society of London, 149, 249-259, 1859.
Brown, H.C., Brown, C.A. Simple preparation of highly active platinum metal catalysts for catalytic hydrogenation. Journal of the American Chemical Society, 84(8), 1494-&, 1962.
Cakanyildirim, C., Guru, M. Hydrogen cycle with sodium borohydride. International Journal of Hydrogen Energy, 33(17), 4634-4639, 2008.
Chen, F., Lu, S.-M., Wang, E., Tseng, K.-T. Renewable energy in Taiwan. Renewable & Sustainable Energy Reviews, 14(7), 2029-2038, 2010.
Cumalioglu, I., Ertas, A., Ma, Y., Maxwell, T. State of the art: hydrogen storage. Journal of Fuel Cell Science and Technology, 5(3), 2008.
Demirci, U.B., Akdim, O., Andrieux, J., Hannauer, J., Chamoun, R., Miele, P. Sodium borohydride hydrolysis as hydrogen generator: issues, state of the art and applicability upstream from a fuel cell. Fuel Cells, 10(3), 335-350, 2010.
Dreyer, D.R., Park, S., Bielawski, C.W., Ruoff, R.S. The chemistry of graphene oxide. Chemical Society Reviews, 39(1), 228-240, 2010.
Eberle, U., Felderhoff, M., Schueth, F. Chemical and physical solutions for hydrogen storage. Angewandte Chemie-International Edition, 48(36), 6608-6630, 2009.
Eda, G., Chhowalla, M. Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Advanced Materials, 22(22), 2392-2415, 2010.
Eda, G., Lin, Y.-Y., Miller, S., Chen, C.-W., Su, W.-F., Chhowalla, M. Transparent and conducting electrodes for organic electronics from reduced graphene oxide. Applied Physics Letters, 92(23), 233305, 2008.
Graetz, J. New approaches to hydrogen storage. Chemical Society Reviews, 38(1), 73-82, 2009.
Haryanto, A., Fernando, S., Murali, N., Adhikari, S. Current status of hydrogen production techniques by steam reforming of ethanol: A review. Energy & Fuels, 19(5), 2098-2106, 2005.
Hummers, W.S., Offeman, R.E. Preparation of graphitic oxide. Journal of the American Chemical Society, 80(6), 1339-1339, 1958.
Jeong, S.U., Kim, R.K., Cho, E.A., Kim, H.J., Nam, S.W., Oh, I.H., Hong, S.A., Kim, S.H. A study on hydrogen generation from NaBH4 solution using the high-performance Co-B catalyst. Journal of Power Sources, 144(1), 129-134, 2005.
Kim, D.-R., Cho, K.-W., Choi, Y.-I., Park, C.-J. Fabrication of porous Co-Ni-P catalysts by electrodeposition and their catalytic characteristics for the generation of hydrogen from an alkaline NaBH4 solution. International Journal of Hydrogen Energy, 34(6), 2622-2630, 2009.
Kirubakaran, A., Jain, S., Nema, R.K. A review on fuel cell technologies and power electronic interface. Renewable & Sustainable Energy Reviews, 13(9), 2430-2440, 2009.
Kojima, Y., Haga, T. Recycling process of sodium metaborate to sodium borohydride. International Journal of Hydrogen Energy, 28(9), 989-993, 2003.
Li, Z.P., Morigazaki, N., Liu, B.H., Suda, S. Preparation of sodium borohydride by reaction of MgH2 with dehydrated borax through ball milling reaction of MgH2 with at room temperature. Journal of Alloys and Compounds, 349(1-2), 232-236, 2003.
Liu, B.H., Li, Z.P. A review: hydrogen generation from borohydride hydrolysis reaction. Journal of Power Sources, 187(2), 527-534, 2009.
Liu, C.-H., Chen, B.-H., Hsueh, C.-L., Ku, J.-R., Jen, M.-S., Tsau, F. Hydrogen generation from hydrolysis of sodium borohydride using Ni-Ru nanocomposite as catalysts. International Journal of Hydrogen Energy, 34(5), 2153-2163, 2009a.
Liu, C.-H., Chen, B.-H., Hsueh, C.-L., Ku, J.-R., Tsau, F., Hwang, K.-J. Preparation of magnetic cobalt-based catalyst for hydrogen generation from alkaline NaBH4 solution. Applied Catalysis B-Environmental, 91(1-2), 368-379, 2009b.
Lu, J.M., Dreisinger, D.B., Cooper, W.C. Cobalt precipitation by reduction with sodium borohydride. Hydrometallurgy, 45(3), 305-322, 1997.
Marrero-Alfonso, E.Y., Beaird, A.M., Davis, T.A., Matthews, M.A. Hydrogen generation from chemical hydrides. Industrial & Engineering Chemistry Research, 48(8), 3703-3712, 2009.
Nath, K., Das, D. Production and storage of hydrogen: present scenario and future perspective. Journal of Scientific & Industrial Research, 66(9), 701-709, 2007.
Niemann, M.U., Srinivasan, S.S., Phani, A.R., Kumar, A., Goswami, D.Y., Stefanakos, E.K. Nanomaterials for hydrogen storage applications: a review. Journal of Nanomaterials, 2008, 1-9, 2008.
Ogden, J.M. Prospects for building a hydrogen energy infrastructure. Annual Review of Energy and the Environment, 24, 227-279, 1999.
Pena-Alonso, R., Sicurelli, A., Callone, E., Carturan, G., Raj, R. A picoscale catalyst for hydrogen generation from NaBH4 for fuel cells. Journal of Power Sources, 165(1), 315-323, 2007.
Satyapal, S., Petrovic, J., Read, C., Thomas, G., Ordaz, G. The US Department of Energy's national hydrogen storage project: progress towards meeting hydrogen-powered vehicle requirements. Catalysis Today, 120(3-4), 246-256, 2007.
Schedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I., Novoselov, K.S. Detection of individual gas molecules adsorbed on graphene. Nature Materials, 6(9), 652-655, 2007.
Schlesinger, H.I., Brown, H.C., Finholt, A.E. The preparation of sodium borohydride by the high temperature reaction of sodium hydride with borate esters. Journal of the American Chemical Society, 75(1), 205-209, 1953a.
Schlesinger, H.I., Brown, H.C., Finholt, A.E., Gilbreath, J.R., Hoekstra, H.R., Hyde, E.K. Sodium borohydride, its hydrolysis and its use as a reducing agent and in the generation of hydrogen. Journal of the American Chemical Society, 75(1), 215-219, 1953b.
Suda, S., Sun, Y.M., Liu, B.H., Zhou, Y., Morimitsu, S., Arai, K., Tsukamoto, N., Uchida, M., Candra, Y., Li, Z.P. Catalytic generation of hydrogen by applying fluorinated-metal hydrides as catalysts. Applied Physics a-Materials Science & Processing, 72(2), 209-212, 2001.
Wu, C., Wu, F., Bai, Y., Yi, B.L., Zhang, H.M. Cobalt boride catalysts for hydrogen generation from alkaline NaBH4 solution. Materials Letters, 59(14-15), 1748-1751, 2005.
Wu, J., Agrawal, M., Becerril, H.A., Bao, Z., Liu, Z., Chen, Y., Peumans, P. Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano, 4(1), 43-48, 2009.
Wu, Y., Kelly, M.T., Ortega, J.V. Review of chemical processes for the synthesis of sodium borohydride. 2004.
Ye, W., Zhang, H., Xu, D., Ma, L., Yi, B. Hydrogen generation utilizing alkaline sodium borohydride solution and supported cobalt catalyst. Journal of Power Sources, 164(2), 544-548, 2007.
Zhou, L. Progress and problems in hydrogen storage methods. Renewable & Sustainable Energy Reviews, 9(4), 395-408, 2005.
陳俊翰. 以銅離子為化學鍍鎳磷鍍液之穩定劑時其析鍍行為之探討. 國立成功大學碩士論文, 2004.
劉政宏. 製備磁性觸媒應用於硼氫化鈉水解產氫系統及放氫後產物再生之研究. 國立成功大學博士論文, 2011.
謝衛慶. 化學鍍方法製備鎳鈷磷合金及其特性之研究. 國立成功大學碩士論文, 2008.