| 研究生: |
林易新 Lin, I-Hsin |
|---|---|
| 論文名稱: |
研究與口腔癌相關 microRNAs 於口腔癌病變中調節機制 The action mechanism whereby oral cancer-associated microRNAs mediate oral carcinogenesis. |
| 指導教授: |
吳梨華
Wu, Li-Wha |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 口腔癌 、早期診斷 、microRNA 、人類唾液 |
| 外文關鍵詞: | oral cancer, early diagnosis, microRNA, human saliva |
| 相關次數: | 點閱:65 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
口腔癌係屬頭頸癌亞型,其惡性腫瘤好發於口腔區域,包括臉頰、舌頭、嘴唇及口底部,其中有超過九成之口腔癌病患癌細胞型態為鱗狀上皮細胞癌。近十年來,口腔癌病患術後之總體五年存活率並無顯著改善,不過,若於口腔癌早期發現病徵並及時予以治療之病患術後總體存活率皆有八成以上,其顯示出早期診斷對於提升口腔癌病患預後結果之必要性,而透過專一性生物標記物來進行早期診斷對於改善口腔癌病變之病患亦日益重要。 研究證明 microRNAs 表現失調與口腔癌病變有著密不可分的關係,而人體口腔內唾液也被認為是能夠直接映照出人體身體狀況與即時反映其口腔環境之生物標記物。 此研究中,我們發現唾液中 miR-X 及 miR-Y 的表現異常上升,不只與口腔癌病患癌症進程相關,亦與病患不良之臨床預後結果有關。其中,若給予 miR-X 或 miR-Y 類似物異位表現,會有效增加其口腔癌細胞株生長及爬行能力,係指出不論 miR-X 抑或 miR-Y 在口腔癌細胞株中皆扮演著 onco-miR 之角色。 為了研究 miR-X 與 miR-Y 於調節口腔癌病變之機制,我們首先以一系列 miR-target 預測系統去篩選 miR-X/-Y 可能與其進行標的作用之六個假定性標的基因。 TCGA 資料庫中亦顯示其六個預測標的基因與 miR-X/-Y 皆有負相關性表現之現象,然而在我們的實驗中發現唯有 PIK3C2B 之3’-UTR 不只具備 miR-X/-Y 之標的區域,其本身表現亦會被 miR-X/-Y 所影響並下調其 mRNA 表現。 PIK3C2B 不只扮演著腫瘤抑制者的角色,同時我們亦證明其 mRNA 表現量下調會與口腔癌癌症進程以及口腔癌病患較差臨床預後表現有關。 除此之外,於口腔癌細胞株中與先天性免疫相關之Toll-like receptors (TLRs) 活化不只會降低 miR-X/-Y 表現,亦會提升 PIK3C2B 之 mRNA 表現量。 雖然截至目前為止之實驗未能解釋其餘 microRNAs 對於口腔癌病患癌病變之影響,本篇研究中所發現之 miR-X 與 miR-Y 皆有機會作為具有潛力並有發展前瞻性之非侵略性唾液生物標記物,以用於偵測其具有高度惡化風險之口腔癌病患相關癌症病變進程。
Oral cancer, a subtype of head and neck cancer, is a malignant tumor that develops in the oral cavity, including cheeks, tongue, lips, and floor of the mouth. More than 90% of this cancer type is squamous cell carcinoma. The overall 5-year survival rate for oral cancer remains unchanged in the past few decades. Since the overall 5-year survival rate for early-stage oral cancer can be higher than 80%, early diagnosis of oral carcinogenesis through identification of specific biomarkers is thus essential for improving prognosis for oral cancer patients. Several studies have demonstrated a close relation of microRNAs deregulation with oral carcinogenesis, and that saliva can directly mirror systemic health and reflect oral environmental conditions. In this study, we found that the increase of two salivary miRs, miR-X and miR-Y, were not only associated with the progression of clinical staging but also reduced patient clinical outcome. Ectopic expression of miR-X or miR-Y mimics significantly increased oral cancer cell proliferation and migration, indicating that both functions as onco-miR in oral cancer cells. To identify the action mechanism whereby miR-X and/or miR-Y mediated oral carcinogenesis, we first used web-based miR-target prediction tools and identified six putative target genes for both miRs. Despite a negative correlation of the respective expression of six putative targets with that of miR-X or miR-Y in the TCGA database for head and neck cancer, we found only one of them, PIK3C2B bearing one miR-targeting site in the 3’-untranslated region, was the bona fide target for both miR-X and miR-Y. Consistent with being a tumor suppressor, PIK3C2B was down-regulated with disease progression and the reduction was also associated with the reduced clinical outcome. The activation of Toll-like receptors (TLRs), key players for innate immunity, repressed the inverse expression of miR-X/-Y with PIK3C2B in oral cancer cells. Although we cannot rule the involvement of additional miRs in oral carcinogenesis, the miRs identified in this study should hold great promise of being developed into noninvasive salivary biomarkers for detecting individuals at high risk of developing oral malignancy.
1. Bartel DP. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297.
2. Bhairavabhotla R, Kim YC, Glass DD, Escobar TM, Patel MC, Zahr R, Nguyen CK, Kilaru GK, Muljo SA, Shevach EM. (2016). Transcriptome profiling of human FoxP3+ regulatory T cells. Hum Immunol 77, 201-213.
3. Chen LH, Tsai KL, Chen YW, Yu CC, Chang KW, Chiou SH, Ku HH, Chu PY, Tseng LM, Huang PI, Lo WL. (2010). MicroRNA as a Novel Modulator in Head and Neck Squamous Carcinoma. J Oncol 10, 135632-135646.
4. Chen YJ, Chang JT, Liao CT, Wang HM, Yen TC, Chiu CC, Lu YC, Li HF, Cheng AJ. (2008). Head and neck cancer in the betel quid chewing area: recent advances in molecular carcinogenesis. Cancer Sci 99, 1507-1514.
5. Chikh A, Ferro R, Abbott JJ, Piñeiro R, Buus R, Iezzi M, Ricci F, Bergamaschi D, Ostano P, Chiorino G, Lattanzio R, Broggini M, Piantelli M, Maffucci T, Falasca M. (2016). Class II phosphoinositide 3-kinase C2β regulates a novel signaling pathway involved in breast cancer progression. Oncotarget. 7, 18325-18345.
6. Croce C. (2012). Introduction to the role of microRNAs in cancer diagnosis, prognosis, and treatment. Cancer J 18, 213–214.
7. Dong Z, Zhong Z, Yang L, Wang S, Gong Z. (2014). MicroRNA-31 inhibits cisplatin-induced apoptosis in non-small cell lung cancer cells by regulating the drug transporter ABCB9. Cancer Lett 343, 249-257.
8. Edmonds MD, Boyd KL, Moyo T, Mitra R, Duszynski R, Arrate MP, Chen X, Zhao Z, Blackwell TS, Andl T, Eischen CM. (2016). MicroRNA-31 initiates lung tumorigenesis and promotes mutant KRAS-driven lung cancer. J Clin Invest 126, 349-364.
9. Erbes T, Hirschfeld M, Rücker G, Jaeger M, Boas J, Iborra S, Mayer S, Gitsch G and Stickeler E. (2015) Feasibility of urinary microRNA detection in breast cancer patients and its potential as an innovative non-invasive biomarker. BMC Cancer 15, 193-201.
10. Esquela-Kerscher A, Slack FJ. (2006). Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 6, 259-269.
11. Falasca M, Maffucci T. (2012). Regulation and cellular functions of class II phosphoinositide 3-kinases. Biochem J 443, 587-601.
12. Feng J, Li A, Deng J, Yang Y, Dang L, Ye Y, Li Y, Zhang W. (2014). miR-21 attenuates lipopolysaccharide-induced lipid accumulation and inflammatory response: potential role in cerebrovascular disease. Lipids Health Dis 13, 27-35.
13. Garzon R, Fabbri M, Cimmino A, Calin GA, Croce CM. (2006). MicroRNA expression and function in cancer. Trends Mol Med 12, 580-587.
14. Garzon R, Marcucci G, Croce CM. (2010). Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov 9, 775-789.
15. Hassan MK, Watari H, Mitamura T, Mohamed Z, El-Khamisy SF, Ohba Y, Sakuragi N. (2015). P18/Stathmin1 is regulated by miR-31 in ovarian cancer in response to taxane. Oncoscience 2, 294-308.
16. He L, Hannon GJ. (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5, 522-531.
17. Hung PS, Tu HF, Kao SY, Yang CC, Liu CJ, Huang TY, Chang KW, Lin SC. (2014). miR-31 is upregulated in oral premalignant epithelium and contributes to the immortalization of normal oral keratinocytes. Carcinogenesis 35, 1162-1171.
18. Jia YP, Wang K, Zhang ZJ, Tong YN, Han D, Hu CY, Li Q, Xiang Y, Mao XH, Tang B. (2017). TLR2/TLR4 activation induces Tregs and suppresses intestinal inflammation caused by Fusobacterium nucleatum in vivo. PLoS One 12, 1086179-1086189.
19. Katso RM, Pardo OE, Palamidessi A, Franz CM, Marinov M, De Laurentiis A, Downward J, Scita G, Ridley AJ, Waterfield MD, Arcaro A. (2006). Phosphoinositide 3-Kinase C2beta regulates cytoskeletal organization and cell migration via Rac-dependent mechanisms. Mol Biol Cell 17, 3729-3744.
20. Kim SB, Zhang L, Barron S, Shay JW. (2014). Inhibition of micro-RNA-31-5p protects human colonic epithelial cells against ionizing radiation. Life Sci Space Res (Amst) 1, 67-73.
21. Ko YC, Huang YL, Lee CH, Chen MJ, Lin LM, Tsai CC. (1995). Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan. J Oral Pathol Med 24, 450-453.
22. Komatsu S, Ichikawa D, Takeshita H, Tsujiura M, Morimura R, et al. (2011). Circulating microRNAs in plasma of patients with oesophageal squamous cell carcinoma. Br J Cancer 105, 104-111.
23. Korner C, Keklikoglou I, Bender C, W€orner A, M€unstermann E, Wiemann S. (2013). MicroRNA-31 sensitizes human breast cells to apoptosis by direct targeting of protein kinase C epsilon (PKCepsilon). J Biol Chem 288, 8750-8761.
24. Krichevsky AM and Gabriely G. (2009). miR-21: A small multi-faceted RNA. J Cell Mol Med 13, 39-53.
25. Krishna Rao SV, Mejia G, Roberts-Thomson K, Logan R. (2013). Epidemiology of oral cancer in Asia in the past decade--an update (2000-2012). Asian Pac J Cancer Prev 14, 5567-5577.
26. Krol J, Loedige I, Filipowicz W. (2010). The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11, 597-610.
27. Kurihara H, Maruyama R, Ishiguro K, Kanno S, Yamamoto I, Ishigami K, Mitsuhashi K, Igarashi H, Ito M, Tanuma T, Sukawa Y, Okita K, Hasegawa T, Imai K, Yamamoto H, Shinomura Y, Nosho K. (2016). The relationship between EZH2 expression and microRNA-31 in colorectal cancer and the role in evolution of the serrated pathway. Oncotarget 7, 12704-12717.
28. Lai YH, Liu H, Chiang WF, Chen TW, Chu LJ, Yu JS, Chen SJ, Chen HC, Tan BC. (2018). MiR-31-5p-ACOX1 Axis Enhances Tumorigenic Fitness in Oral Squamous Cell Carcinoma Via the Promigratory Prostaglandin E2. Theranostics 8, 486-504.
29. Laurila EM, Kallioniemi A. (2013). The diverse role of miR-31 in regulating cancer associated phenotypes. Genes Chromosomes Cancer 52, 1103-1113.
30. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S, Kim VN. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415-419.
31. Lee YH, Wong DT. (2009). Saliva: an emerging biofluid for early detection of diseases. Am J Dent 22, 241-248.
32. Lee YS, Dutta A. (2009). MicroRNAs in cancer. Annu Rev Pathol 4, 199-227.
33. Li A, Chen H, Lin M, Zhang C, Tang E, Peng J, Wei Q, Li H, Yin L. (2015). PIK3C2G copy number is associated with clinical outcomes of colorectal cancer patients treated with oxaliplatin. Int J Clin Exp Med 8, 1137-1143.
34. Li D, Li X, Wang A, Meisgen F, Pivarcsi A, Sonkoly E, Ståhle M. (2015). MicroRNA-31 promotes skin wound healing by enhancing keratinocyte proliferation and migration. J Invest Dermatol 135, 1676-1685.
35. Li J, Lee DS, Madrenas J. (2013). Evolving Bacterial Envelopes and Plasticity of TLR2-Dependent Responses: Basic Research and Translational Opportunities. Front Immunol 4, 347.
36. Li S, Yang X, Yang J, Zhen J and Zhang D. (2014). Serum microRNA-21 as a potential diagnostic biomarker for breast cancer: A systematic review and meta-analysis. Clin Exp Med 16, 29-35.
37. Li X, Zheng Y. (2015). Regulatory T cell identity: formation an maintenance. Trends Immunol 36, 344-353.
38. Lin YT, Chien CY, Lu CT, Lou SD, Lu H, Huang CC, Fang FM, Li SH, Huang TL, Chuang HC. (2015). Triple-positive pathologic findings in oral cavity cancer are related to a dismal prognosis. Laryngoscope 125, 300-305.
39. Lo WL, Kao SY, Chi LY, Wong YK, Chang RC. (2003). Outcomes of oral squamous cell carcinoma in Taiwan after surgical therapy: factors affecting survival. J Oral Maxillofac Surg 61, 751-758.
40. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR. (2005). MicroRNA expression profiles classify human cancers. Nature 435, 834-838.
41. Lund E, Güttinger S, Calado A, Dahlberg JE, Kutay U. (2004). Nuclear export of microRNA precursors. Science 303, 95-98.
42. Matsushima K, Isomoto H, Kohno S, Nakao K. (2010). MicroRNAs and esophageal squamous cell carcinoma. Digestion 82, 138-144.
43. Mavrommati I, Cisse O, Falasca M, Maffucci T. (2016). Novel roles for class II Phosphoinositide 3-Kinase C2β in signalling pathways involved in prostate cancer cell invasion. Sci Rep 6, 23277.
44. Meng F, Wu CL, Tsao CJ, Chang JG, Lu PJ, Yeh KT, Uen YH, Lee JC, Shiau AL. (2011). Deregulated expression of sprouty2 and microRNA-21 in human colon cancer: Correlation with the clinical stage of the disease. Cancer Biol Ther 11, 111-121.
45. Meng W, Ye Z, Cui R, Perry J, Dedousi-Huebner V, Huebner A, Wang Y, Li B, Volinia S, Nakanishi H, Kim T, Suh SS, Ayers LW, Ross P, Croce CM, Chakravarti A, Jin VX, Lautenschlaeger T. (2013). MicroRNA-31 predicts the presence of lymph node metastases and survival in patients with lung adenocarcinoma. Clin Cancer Res 19, 5423-5433.
46. Mulrane L, Gallagher WM, O’Connor DP. (2014). A novel mechanism of regulation of the anti-metastatic miR-31 by EMSY in breast cancer. Breast Cancer Res 16, 467-469.
47. Murugaiyan G, da Cunha AP, Ajay AK, Joller N, Garo LP, Kumaradevan S, Yosef N, Vaidya VS, Weiner HL. (2015). MicroRNA-21 promotes Th17 differentiation and mediates experimental autoimmune encephalomyelitis. J Clin Invest 125, 1069-1080.
48. Pan L, Chen H, Bai Y, Wang Q, Chen L. (2019). Long non-coding RNA CASC2 serves as a ceRNA of microRNA-21 to promote PDCD4 expression in oral squamous cell carcinoma. Onco Targets Ther 12, 3377-3385.
49. Park NJ, Zhou H, Elashoff D, Henson BS, Kastratovic DA. (2009). Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clin Cancer Res 15, 5473-5477.
50. Peacock O, Lee AC, Cameron F, Tarbox R, Vafadar-Isfahani N, Tufarelli C, Lund JN. (2014). Inflammation and MiR-21 pathways functionally interact to downregulate PDCD4 in colorectal cancer. PLoS One 9, e110267.
51. Rabinowits G, Gercel-Taylor C, Day JM, Taylor DD, Kloecker GH. (2009). Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer 10, 42-46.
52. Rasheed SA, Teo CR, Beillard EJ, Voorhoeve PM, Zhou W, Ghosh S, Casey PJ. (2015). MicroRNA-31 controls G protein alpha-13 (GNA13) expression and cell invasion in breast cancer cells. Mol Cancer 14, 67.
53. Ren W, Qiang C, Gao L, Li SM, Zhang LM, Wang XL, Dong JW, Chen C, Liu CY, Zhi KQ. (2014). Circulating microRNA-21 (MIR-21) and phosphatase and tensin homolog (PTEN) are promising novel biomarkers for detection of oral squamous cell carcinoma. Biomarkers 19, 590-596.
54. Rouas R, Fayyad-Kazan H, El Zein N, Lewalle P, Rothé F, Simion A, Akl H, Mourtada M, El Rifai M, Burny A, Romero P, Martiat P, Badran B. (2009). Human natural Treg microRNA signature: role of microRNA-31 and microRNA-21 in FOXP3 expression. Eur J Immunol 39, 1608-1618.
55. Shi J, Ma X, Su Y, Song Y, Tian Y, Yuan S, Zhang X, Yang D, Zhang H, Shuai J, Cui W, Ren F, Plikus MV, Chen Y, Luo J, Yu Z. (2018). MiR-31 Mediates Inflammatory Signaling to Promote Re-Epithelialization during Skin Wound Healing. J Invest Dermatol 138, 2253-2263.
56. Taylor DD, Gercel-Taylor C. (2008). MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110, 13-21.
57. Tran N, McLean T, Zhang X, Zhao CJ, Thomson JM, O'Brien C, Rose B. (2007). MicroRNA expression profiles in head and neck cancer cell lines. Biochem Biophys Res Commun 358, 12-17.
58. Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B. (2010). The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol 11, 329-341.
59. Vanhaesebroeck B, Leevers SJ, Ahmadi K, Timms J, Katso R, Driscoll PC, Woscholski R, Parker PJ, Waterfield MD. (2001). Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem 70, 535-602.
60. Vire E, Curtis C, Davalos V, Git A, Robson S, Villanueva A, Vidal A, Barbieri I, Aparicio S, Esteller M, Caldas C, Kouzarides T. (2014). The breast cancer oncogene EMSY represses transcription of antimetastatic microRNA miR-31. Mol Cell 53, 806-818.
61. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M. (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103, 2257-2261.
62. Wang H, Peng R, Wang J, Qin Z, Xue L. (2018). Circulating microRNAs as potential cancer biomarkers: the advantage and disadvantage. Clin Epigenetics 10, 59.
63. Wang S, Wu W, Claret FX. (2017). Mutual regulation of microRNAs and DNA methylation in human cancers. Epigenetics 12, 187-197.
64. Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, et al. The microRNA spectrum in 12 body fluids. Clin Chem 2010 56: 1733–1741.
65. Wei X, Wang W, Wang L, Zhang Y, Zhang X, Chen M, Wang F, Yu J, Ma Y and Sun G: MicroRNA-21 induces 5-fluorouracil resistance in human pancreatic cancer cells by regulating PTEN and PDCD4. Cancer Med 5: 693-702, 2016.
66. Welfare, T.M.o.H.a. (2017). Taiwan’s Leading of Death in 2016 (Taiwan Ministry of Health and Welfare).
67. Wiklund ED, Gao S, Hulf T, Sibbritt T, Nair S. (2011). MicroRNA alterations and associated aberrant DNA methylation patterns across multiple sample types in oral squamous cell carcinoma. PLoS One 6, e27840.
68. Winter J, Jung S, Keller S, Gregory RI, Diederichs S. (2009). Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11, 228-234.
69. Xie Z, Chen G, Zhang X, Li D, Huang J, Yang C, Zhang P, Qin Y, Duan Y, Gong B, Li Z. (2013). Salivary microRNAs as promising biomarkers for detection of esophageal cancer. PLoS One 8, e57502
70. Yan S, Xu Z, Lou F, Zhang L, Ke F, Bai J, Liu Z, Liu J, Wang H, Zhu H, Sun Y, Cai W, Gao Y, Su B, Li Q, Yang X, Yu J, Lai Y, Yu XZ, Zheng Y, Shen N, Chin YE, Wang H. (2015). NF-κB-induced microRNA-31 promotes epidermal hyperplasia by repressing protein phosphatase 6 in psoriasis. Nat Commun 6,
71. Yang CM, Hou YY, Chiu YT, Chen HC, Chu ST, Chi CC, Hsiao M, Lee CY, Hsieh CJ, Lin YC, Hsieh YD, Ger LP. (2011). Interaction between tumour necrosis factor-α gene polymorphisms and substance use on risk of betel quid-related oral and pharyngeal squamous cell carcinoma in Taiwan. Arch Oral Biol. 56, 1162-1169.
72. Yoshioka K, Yoshida K, Cui H, Wakayama T, Takuwa N, Okamoto Y, Du W, Qi X, Asanuma K, Sugihara K, Aki S, Miyazawa H, Biswas K, Nagakura C, Ueno M, Iseki S, Schwartz RJ, Okamoto H, Sasaki T, Matsui O, Asano M, Adams RH, Takakura N, Takuwa Y. (2012). Endothelial PI3K-C2α, a class II PI3K, has an essential role in angiogenesis and vascular barrier function. Nat Med 18, 1560-1569.
73. Zhang L, Ke F, Liu Z, Bai J, Liu J, Yan S, Xu Z, Lou F, Wang H, Zhu H, Sun Y, Cai W, Gao Y, Li Q, Yu XZ, Qian Y, Hua Z, Deng J, Li QJ, Wang H. (2015). MicroRNA-31 negatively regulates peripherally derived regulatory T-cell generation by repressing retinoic acid-inducible protein 3. Nat Commun 6, 7639.
74. Zhang ZJ and Ma SL. (2012). miRNAs in breast cancer tumorigenesis (Review). Oncol Rep 27, 903-910.