簡易檢索 / 詳目顯示

研究生: 吳姿誼
Wu, Tzu-I
論文名稱: 軸對稱矽膠填充床內水汽吸/脫附反應之熱質傳計算分析
Numerical heat and mass transfer analysis for moisture adsorption/desorption in axisymmetric silica-gel packed beds
指導教授: 楊天祥
Yang, Tian-Shiang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 121
中文關鍵詞: 軸對稱矽膠填充床空氣溫度空氣濕度矽膠粒徑固體側熱質傳阻抗
外文關鍵詞: axisymmetric silica gel packed bed, inlet air temperature, inlet air moisture, particle radius, solid-side resistance
相關次數: 點閱:145下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 矽膠廣泛應用於許多工業製程,像是揮發性有機化合物之吸/脫附、儲能系統等。為了幫助這些工業應用的系統設計,必須了解矽膠在吸/脫附反應的熱質傳特性。目前已經存在之矽膠吸/脫附水汽系列研究中,固體側阻抗(solid-side resistance; SSR)模型因為考量了矽膠之固體側質傳阻抗,故較先前的擬氣體側控制(pseudo-gas-side controlled; PGC)模型更能準確預測反應過程。其中SSR模型又可區分成有考量矽膠顆粒熱傳導阻抗與忽略矽膠顆粒熱傳導阻抗兩種模型。若是前者,則矽膠顆粒內部的溫度分布是會隨著顆粒內部的徑向位置變化。若為後者,則矽膠顆粒即為均勻溫度。在本研究中發現這兩種模型即便在Biot 數小於0.1的條件下,反應結果依然會有些微的差異。具體而言,此差異為忽略熱傳導阻抗的模型其反應結果會有時間的延遲。為了能更加準確預測反應過程,接下來我們皆採用有考量矽膠顆粒熱傳導阻抗的SSR模型做後續的模擬研究。
    同時,在先前的研究中,SSR模型僅考慮矽膠填充床軸向的一維變化。在本論文中,我們建立了二維軸對稱矽膠填充床模型;除了原先的軸向還增加徑向的變化,如此一來就能考慮環境對流散熱的效果,並且提升矽膠填充床之吸附速率。因此在本研究有針對環境空氣之對流熱傳係數進行探討,並發現填充床模型尺寸越大,其提升吸附速率效果越明顯。矽膠在吸附水汽會放熱,在脫附水汽時會吸熱,因此亦有針對空氣溫度與濕度進行討論,並發現當進口溫度越低或濕度越高皆會使吸附水汽反應速率加快,若是脫附水汽反應則相反;另一方面我們發現不論是在吸附或脫附水汽反應中,只要固定進口溫度與濕度的大小就能求出反應最終之矽膠含水量,如此將能幫助我們判別矽膠能夠吸/脫附水汽的最大值;此外我們亦發現反應速率會受到矽膠粒徑大小影響,造成此原因為當粒徑越小,單位體積內矽膠總表面積會增大,因此反應速率會加快。

    Silica-gel is extensively used in various industrial processes. In order to help design these industrial applications, it is necessary to figure out the heat and mass transfer mechanism during moisture adsorption/desorption process of silica-gel. Previous studies indicate that SSR (solid-side resistance) model, with extra consideration of intraparticle mass transfer resistance, usually can predict more accurately than the earlier PGC (pseudo-gas-side controlled) model does. Furthermore, the SSR model can be categorized into two part, one considers thermal resistance and the other does not. In this study, it is found that these thermal resistances have to be taken into account for Bi > 0.01; otherwise, there were be some time delay in the model. On the other hand, previous research has demonstrated SSR model with 1-D (with axial direction). In this thesis, a 2-D (with both axial and radial directions) silica gel packed bed model is constructed, Therefore it can take the heat convection on the wall of the reactor into account, additionally, enhancing adsorption rate of silica gel. Besides, silica gel releases heat during moisture adsorption process and adsorbs heat during moisture desorption process. As a result, the inlet air velocity and the inlet air moisture play an important role in this study. Furthermore, it is found that decreasing the inlet air temperature or increasing the inlet air moisture makes adsorption rates faster. Besides, whether in adsorption reaction or in desorption reaction, silica gel desiccant water content would be obtained if we know the inlet air temperature and moisture. In addition, it is found that decreasing the particle radius increases surface area per unit volume of desiccant particle and, consequently, enhances adsorption rates of silica gel.

    摘要 I Abstract II 誌謝 IX 目錄 X 圖目錄 XII 表目錄 XVII 符號說明 XVIII 第一章 緒論 1 1.1研究背景與動機 1 1.2文獻回顧 3 1.3研究目的 7 1.4本文架構 8 第二章 理論模型 9 2.1重要物理假設 9 2.2矽膠內部之熱質傳平衡式 11 2.2.1質量平衡方程式 11 2.2.2能量平衡方程式 16 2.3濕空氣側之熱質傳平衡式 19 2.3.1質量平衡方程式 19 2.3.2能量平衡方程式 20 2.4無因次化 22 2.5參數設定 28 第三章 數值方法 39 3.1離散法 39 3.2程式流程 40 第四章 一維與二維模型驗證 43 4.1填充床能量與質量守恆驗證 44 4.2收斂性測試 46 第五章 矽膠填充床吸/脫附計算結果與討論 58 5.1水汽吸附反應過程 60 5.2水汽脫附反應過程 67 5.3矽膠顆粒熱傳導阻抗之影響 72 5.4周圍空氣之對流熱傳係數分析 77 5.5一維模型與二維模型之比較 83 5.6進口空氣濕度與溫度分析 89 5.6.1進口濕度對矽膠填充床總吸水量與 之影響 89 5.6.2進口溫度對矽膠填充床總吸水量之影響 91 5.6.3水汽吸附狀態之判別 92 5.6.4進口溫度與濕度對水汽吸/脫附反應之影響 95 5.7矽膠粒徑分析 102 5.8與吳健銘學長實驗結果之比較 107 第六章 結論與未來工作 114 6.1結論 114 6.2本文貢獻 115 6.3未來工作 116 參考文獻 117

    [1] J. Clark, A. Mills, H. Buchberg, "Design and testing of thin adiabatic desiccant beds for solar air conditioning applications," Journal of Solar Energy Engineering, vol. 103, pp. 89-91, 1981.
    [2] H. Sui, H. Liu, P. An, L. He, X. Li, S. Cong, "Application of silica gel in removing high concentrations toluene vapor by adsorption and desorption process, " Journal of the Taiwan Institute of Chemical Engineers, vol. 74, pp. 218-224, 2017.
    [3] H. Deshmukh, M. P. Maiya, S. S. Murthy, "Study of sorption based energy storage system with silica gel for heating application," Applied Thermal Engineering, vol. 111, pp. 1640-1646, 2017.
    [4] 方煒, "設施生產自動化技術,"電子書,生物產業機電工程系,國立台灣大學,取自http://WWW.ECAA.NTU.EDU.TW/weifang/Hort/default.htm. 存取更新時間 2012/8/29.
    [5] A. A. Pesaran, A. F. Mills, "Moisture transport in silica gel packed beds—I.Theoretical study," International Journal of Heat and Mass Transfer, vol. 30, pp. 1037-1049, 1987.
    [6] A. A. Pesaran, A. F. Mills, "Moisture transport in silica gel packed beds—II. Experimental study," International Journal of Heat and Mass Transfer, vol. 30, pp. 1051-1060, 1987.
    [7] K. Kafui, "Transient heat and moisture transfer in thin silica gel beds," Journal of heat transfer, vol. 116, pp. 946-953, 1994.
    [8] J.-Y. San, G.-D. Jiang, "Modeling and testing of a silica gel packed-bed system," International Journal of Heat and Mass Transfer, vol. 37, pp. 1173-1179, 1994.
    [9] T. Dobre, O.C. Parvulescu, G. Iavorschi, M. Stroescu, A. Stoica, "Volatile organic compounds removal from gas streams by adsorption onto activated carbon," Industrial and Engineering Chemistry Research, vol. 53, pp. 3622-3628, 2014.
    [10] J. A. Bernstein, N. Alexis, H. Bacchus, I. L. Bernstein, P. Fritz, E. Horner, "The health effects of nonindustrial indoor air pollution," Journal of Allergy and Clinical Immunology, vol. 121, pp. 585-591, 2008.
    [11] J. F. Saldarriaga, R. Aguado, G. E. Morales, "Assessment of VOC emissions from municipal solid waste composting," Environmental Engineering Science, vol. 31, pp. 300-307, 2014.
    [12] W. Wei, S. Wang, J. Hao, S. Cheng, "Trends of chemical speciation profiles of anthropogenic volatile organic compounds emissions in China, 2005–2020," Frontiers of Environmental Science & Engineering, vol. 8, pp. 27-41, 2014.
    [13] B. P. Kelleher, A. M. Doyle, B. K. Hodnett, T. F. O’Dwyer, "An Investigation into the Adsorption Characteristics of Grafted Mesoporous Silicates for the Removal of Tetramethyl Ammonium Hydroxide from Aqueous Solution," Adsorption Science & Technology, vol. 20, pp. 787-796, 2002.
    [14] D. Prahas, J. Liu, S. Ismadji, M. J. Wang, "Adsorption of tetramethylammonium hydroxide on activated carbon," Journal of Environmental Engineering, vol. 138, pp. 232-238, 2012.
    [15] 朱鼎舜, "釋氫壓力控制對金屬儲氫罐供氫性能的影響," 碩士論文, 機械工程學系碩博士班, 國立成功大學, 台南市, 2008.
    [16] 崔瑋麟, "金屬氫化物顆粒儲氫性能之理論建模與數值模擬," 碩士論文, 機械工程學系碩博士班, 國立成功大學, 台南市, 2010.
    [17] 蔡孟龍, "金屬氫化物儲氫系統之熱流分析: 釋氫壓力控制與導熱發泡金屬體積比對系統性能之影響," 博士論文, 機械工程學系碩博士班, 國立成功大學, 台南市, 2011.
    [18] 李承恩, "金屬氫化物儲氫系統中導熱發泡金屬體積比分佈對系統性能之影響," 碩士論文, 機械工程學系碩博士班, 國立成功大學, 台南市, 2011.
    [19] 吳健銘, "多孔性吸附反應器之實驗研究與熱傳分析," 碩士論文, 機械工程學系碩博士班, 國立成功大學, 台南市, 2013.
    [20] 林尚賢, "多孔性吸脫附反應器熱管理效能之實驗分析," 碩士論文, 機械工程學系碩博士班, 國立成功大學, 台南市, 2014.
    [21] T. P. Syawitri, "Numerical Investigation into The Effect of Metal-foam Volume Fraction on The Performance of Metal Hydride Reactor Subjected to Periodic Charging and Discharging," master's thesis, National Cheng Kung University, 2015.
    [22] K. C. Chuang, "Numerical Performance Simulation of a Metal Hydride Reactor with Spatially Distributed Metal-foam Volume Fraction," master's thesis, National Cheng Kung University, Tainan, 2015.
    [23] 黃齡儀, "矽膠填充床內水汽吸/脫附反應之數值研究," 碩士論文, 機械工程學系碩博士班, 國立成功大學, 台南市, 2016.
    [24] O. Hougen, W. Marshall, "Adsorption from a fluid stream flowing through a stationary granular bed," Chemical Engineering Progress, vol. 43, pp. 197-208, 1947.
    [25] 倪建青, "定壓下矽膠吸附水蒸氣之理論模式之推導與固體側質傳擴散係數之量測," 博士論文, 機械工程學系碩博士班, 國立中興大學, 台中市, 2001.
    [26] N. Wakao, S. Kaguei, T. Funazkri, "Effect of fluid dispersion coefficients on particle-to-fluid heat transfer coefficients in packed beds: correlation of Nusselt numbers," Chemical engineering science, vol. 34, pp. 325-336, 1979.
    [27] N. Wakao, T. Funazkri, "Effect of fluid dispersion coefficients on particle-to-fluid mass transfer coefficients in packed beds: correlation of Sherwood numbers," Chemical Engineering Science, vol. 33, pp. 1375-1384, 1978.
    [28] D. K. Edward, V. E. Denny, A. F. Mills, "Transfer Processes, " Hemisphere/McGraw-Hill Book Company, Inc., New York, 1979.
    [29] P. Glover, "Petrophysics MSc Course Notes, " from https://www.coursehero.com/file/
    8567704/Chapter-2/
    [30] Y. A. Cengel, A. J. Ghajar, "Heat and Mass Transfer Fundamentals & Applications," McGraw-Hill Book Company, Inc.,2013.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE