簡易檢索 / 詳目顯示

研究生: 許茗閎
Hsu, Ming-Hong
論文名稱: 基因重組人類表皮調節素的復性,純化以及細胞活性分析
Purification, refolding and activity analysis of recombinant human epiregulin
指導教授: 蕭世裕
Shaw, Shyh-Yu
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 68
中文關鍵詞: 大腸癌人類表皮調節素蛋白質透析細胞存活率實驗
外文關鍵詞: colorectal cancer, epiregulin, protein dialysis, cell viability assay
相關次數: 點閱:114下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人類表皮調節素(human epiregulin)為表皮細胞生長因子(Epidermal growth factor, EGF)的家族成員之一,過去的研究發現它具有促進表皮細胞生長的功能,也因此吸引了腫瘤醫學研究者的目光,自1995年人類表皮調節素首次被證明其存在以來的許多文獻顯示其表現量在胃癌細胞中受到明顯的抑制,而且分析罹患大腸癌的病患後發現其表現量與病患的存活率有顯著的相關性,人類表皮調節素表現量較高的大腸癌患者的存活率相對較高,這個發現與實驗室先前的病患組織分析研究一致,本研究利用大腸桿菌大量表現重組人類表皮調節素並加以純化,改良本實驗室學長所建立的復性反應條件以及復性後的目標重組蛋白構型純化的方法,達到產率大幅提升、製備程序精簡的成果。本實驗室之前的研究中已經證實重組人類表皮調節素具有與A431癌細胞株的表面受體結合之能力,因此本研究選擇A431癌細胞株為細胞活性實驗的對象,並且成功證明此細胞生長確實受到重組人類表皮調節素的抑制(p<0.01),最後,本研究發現重組人類表皮調節素與用於治療大腸癌患者的標靶藥物Cetuximab抑制A431癌細胞株生長的能力具有加乘性(p<0.05),並討論是否有發展成合併治療的可能性。

    Epiregulin, a member of epidermal growth factor family, plays an important role in colorectal cancer. Previous studies indicated that high expression level of epiregulin was associated with longer overall survival (OS) and progression-free survival (PFS). To test the potential of epiregulin to become a brand-new protein drug, recombinant human epiregulin (rhEREG) was overexpressed in the E.coli expression system and purified via affinity chromatography. Improvement of refolding procedure was required to maximize the yield of the desired conformation of rhEREG. Furthermore, we had discovered a novel method to enhance its purity and simplify the refolding & purification process. Growth inhibition of A431 cell line by rhEREG was examined by cell viability assay (p<0.01). The inhibition reached 35 % when rhEREG concentration was 300 nM. Finally, an enhanced growth inhibition effect of A431 was observed from a combined treatment of rhEREG with cetuximab, a classic IgG antibody used in the colorectal cancer therapy (p<0.05).

    中文摘要I 英文摘要II 誌謝 VII 目錄 IX 圖與附錄目錄 XII 一、 研究背景 1 1-1 表皮細胞生長因子與表皮細胞生長因子受體 1 1-2 表皮細胞生長因子與受體在腫瘤中扮演的角色 3 1-3 表皮調節素(Epiregulin) 5 1-4 蛋白質化學帶來的藥物發展趨勢 7 1-5 蛋白質的異體表達及復性 9 二、 研究目的 11 三、 材料與方法 12 3-1 實驗材料 12 3-1-1 耗材與試劑 12 3-1-2 儀器設備 15 3-2 實驗方法 16 3-2-1重組人類表皮調節素的製備 16 3-2-2重組人類表皮調節素的復性、透析純化與樣品後處理 18 3-2-3 細胞存活率實驗 20 四、 結果 22 4-1重組人類表皮調節素的製備 22 4-1-1 確認重組人類表皮調節素的大量表現情形 22 4-1-2 以親和性管柱法純化重組人類表皮調節素 22 4-2重組人類表皮調節素的復性、透析純化與樣品後處理 23 4-2-1 重組人類表皮調節素的復性 23 4-2-2 利用透析法提高重組人類表皮調節素peak 1之純度 24 4-2-3 移除重組人類表皮調節素的His-tag及檢視移除效率 25 4-2-4 將重組人類表皮調節素處理至可進行細胞實驗 26 4-3細胞存活率實驗 27 4-3-1 以細胞存活率試驗測試重組人類表皮調節素活性 27 4-3-2 Cetuximab與重組人類表皮調節素共同處理的細胞存活率 試驗 28 五、 討論 30 5-1重組人類表皮調節素的大量表現與親和性管柱純化 30 5-2以高效能液相層析儀分析重組人類表皮調節素的復性過程 31 5-3以透析法純化正確摺疊之重組人類表皮調節素 32 5-4適合凝血酶作用的條件及移除凝血酶 34 5-5重組人類表皮調節素的細胞活性分析 35 5-6重組人類表皮調節素與cetuximab的加乘影響性分析 37 六、 參考文獻 40 七、 圖與附錄 49

    1. Robert Roskoski Jr. The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacological Research 79, 34- 74, 2014.
    2. Raymond C. Harris, Eunkyung Chung, and Robert J. Coffey. EGF receptor ligands. Experimental Cell Research 284, 2–13, 2003.
    3. Susan Wohler Sunnarborg, C. Leann Hinkle, Mary Stevenson. Tumor necrosis factor-α converting enzyme (TACE) regulates epidermal growth factor receptor ligand availability. The Journal of Biologial Chemistry 277, 12838-12845, 2002.
    4. Carpenter G. Epidermal growth factor family. Peptide Growth Factors and Their Receptors. Springer, New York, 69-91, 1991.
    5. Kathryn M. Ferguson. A structure-based view of Epidermal Growth Factor Receptor regulation. Annu Rev Biophys. 37, 353-373, 2008.
    6. Mark A. Lemmon and Joseph Schlessinger. Cell signaling by receptor- tyrosing kinase. Annu Rev Biophys. 141, 1117-1134, 2010.
    7. Krishnaraj Rajalingam, Ralf Schreck, Ulf R. Rapp. Ras oncogenes and their downstream targets. Biochimica et Biophysica Acta. 1773, 1177-1195, 2007.
    8. Yosef Yarden, Mark X. Sliwkowski. Untangling the ErbB signaling network.Nature. Reviews Molecular Cell Biology. 2, 127-137, 2001.
    9. R. I. Nicolson, J. M. Gee, M. E. Harper. EGFR and cancer prognosis. European Journal of Cancer. 37, S9-S15, 2001.
    10. Jeffrey S. Ross, Jonathan A. Fletcher, Gerald P. Linette. The her-2/neu gene and protein in breast cancer 2003:biomarker and target of therapy. The Oncologist. 8, 307-325, 2003.
    11. Charles L. Vogel, Melody A. Cobleigh, Debu Tripathy. Efficacy and safty of tratuzumab as a single agent in firt-line treatment of HER2-overexpressing metastatic breast cancer. Journal of Clinical Oncology. 20, 719-726, 2002.
    12. Eric Van Cutsem, Claus-Henning Kohne, Erika Hitre. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. The New England Journal of Medicine. 360, 1408-1417, 2009.
    13. F. Caiazza, P. M. McGowan, M. Mullooly, A. Murray, N. Synnott. Targeting ADAM-17 with an inhibitory monoclonal antibody has antitumour effects in triple-negative breast cancer cells. British Journal of Cancer 112, 1895-1903, 2015.
    14. PM Das, AD Thor, SM Edgerton, SK Barry. Reactivation of epigenetically silenced HER4/ERBB4 results in apoptosis of breast tumor cells. Oncogene 29, 5214-5219, 2010.
    15. Hognason T., Sukalyan Chatterjee, Timothy Vartanian. Epidermal growth factor receptor induced apoptosis:potentiation by inhibition of Ras signaling. Federation of European Biochemical Societies 491, 9-15, 2001.
    16. Amanda K. Arrington, Eileen L. Heinrich, Wendy Lee. Prognostic and predictive roles of KRas mutation in colorectal cancer. International Journal of Molecular Sciences 13, 12153-12168, 2012.
    17. Hitoshi Toyoda, Toshi Komurasaki, Daisuke Uchida. Epiregulin, a novel epidermal growth factor with mitogenic activity for rat primary hepatocytes. The Journal of Biochemical Chemistry 270, 7495-7500, 1995.
    18. Eiji Sasaki, Tetsuo Arakawa, Yasuhiro Fujiwara. Epiregulin stimulates proliferation of rabbit gastric cells in primary culture through autophosphorylation of the epidermal growth factor receptor. European Journal of Pharmacology 338, 253-258, 1997.
    19. Yuan Zhang, Takeshi Kobayashi. Important role of epiregulin in Inflammatory responses during corneal epithelial wound healing. Investigative Ophthalmology & Visual Science 53, 2414-2423, 2012.
    20. Draper BK., Komurasaki T. Topical epiregulin enhances repair of murine excisional wounds. Wound Repair and Regeneration 11, 188-97, 2003.
    21. Hitoshi Toyoda, Toshi Komurasaki, Daisuke Uchida. Distribution of mRNA for human epiregulin, a differentially expressed member of the epidermal growth factor family. Journal of Biochemistry 326, 69-75, 1997.
    22. Toshi Komurasaki, Hitoshi Toyoda, Daisuke Uchida. Mechanism of growth promoting activity of epiregulin in primary cultures of rat hepatocytes. Growth Factors 20, 61-69, 2009.
    23. Zhaowen Zhu, Jorg Kleeff. Epiregulin is up-regulated in pancreatic cancer and stimulates pancreatic cancer cell growth. Biochemical and Biophysical Research Communications 273, 1019-1024, 2000.
    24. N. Sunaga, K. Kaira. Oncogenic KRas-induced epiregulin overexpression contributes to aggressive phenotype and is a promising therapeutic target in non-small-cell lung cancer. Oncogene 32, 4034-4042,2013.
    25. Daekee Lee, R. Scott Pearsall, Sanjoy Das. Epiregulin is not essential for development of intestinal tumors but is required for protection from intestinal damage. Molecular and Cellular Biology 24, 8907-8916, 2004.
    26. Khambata F. S., Christopher R. Garrett, Neal J. Meropol. Expression of Epiregulin and Amphiregulin and K-ras mutation status predict disease controli in metastatic colorectal cancer patients treated with cetuximab. Journal of Clinical Oncology 3230-3237, 2007.
    27. DJ. Jonker, CS. Karapetics, C Harbion. Epiregulin gene expression as a biomarker of benefit from cetuximab in the treatment of advanced colorectal cancer. British Journal of Cancer 110, 648-655, 2014.
    28. Jiyeon Yun, Sang-Hyun Song, Jinah Park. Gene silencing of EREG mediated by DNA methylation and histone modification in human gastric cancers. Laboratory Investigation 92, 1033-1044, 2012.
    29. TO. Nielsen, Steen Seier Puolsen, Birgitte Fedespiel. Expression of the EGF family in gastric cancer:downregulation of HER4 and its activating ligand NRG4. Plus One Journal 9, 1-9, 2014.
    30. David V. Goeddel, Dennis G. Kleid, Francisco Bolivar. Expression in Escherichia coli of chemically synthesized genes for human insulin. Proc Natl Acad Sci USA 76, 106-110, 1979.
    31. Shanteri Singh, Jason G. McCoy, Changsheng Zhang. Structure and mechanism of the rebeccamycin sugar 4’-O-methyltransferase RebM. The Journal of Biological Chemistry 283, 22628-22636, 2008.
    32. Zihe Liu, Keith E.J. Tyo, Jose L. Martinez. Different expression systems for production of recombinant proteins in Saccharomyces cerevisiae. Biotechnology and Bioengineering 109, 1259-1268, 2012.
    33. Shuaiying Peng, Zhongmei Chu, Jianfeng Lu, Co-expression of chaperones from P. furiosus enhanced the soluble expression of the recombinant hyperthermophilic α-amylase in E. coli. Cell Stress and Chaperones 21, 477-484, 2016.
    34. Hans Peter Sørensen, Hans Uffe Sperling-Petersen. Dialysis strategies for protein refolding:preparative streptavidin production. Protein expression and purification 31, 149-154, 2003.
    35. Hiroshi Yamaguchi, Masaya Miyazaki. Refolding techniques for recovering biologically active recombinant proteins form inclusion bodies. Biomolecules 4, 235-251, 2014.
    36. G. Lemercier, N. Bakalara, X. Santarelli. On-column refolding of an insoluble histidine tag recombinant exopolyphosphatase from Trypanooma brucei overexpressed in Escherichia coli. Journal of Chromatography B 786, 205-309, 2003.
    37. Joanna K. Kruger, Matthew H. Kulke. Protein inclusion body formation and purification. Biopharm 40-45, 1989.
    38. Bai-Gong Yue, Paul Ajuh, Angus I. Lamond. Functional coexpression of serine protein kinase SRPK1 and its substrate ASF/SF2 in Escherichia coli. Nucleic Acid Research 28, e14, 2000.
    39. Sarah E. Bondos, Alicia Bicknell. Detection and prevention of protein aggregation before, during, and after purification. Analytical Biochemistry 316, 223-231, 2002.
    40. Anthony L Fink. Protein aggregation:folding aggregates, inclusion bodies and amyloid. Folding & Design 3, R9-R23, 1998.
    41. Vincenzo DE Filippis, Elisa DE Dea, Filippo Lucatello. Effect of Na+ binding on the conformation, stability and molecular recognition properties of thrombin. The Journal of Biochemistry 390, 485-492, 2005.
    42. Cheng Jing, Yang Han Jin, Zhai You, Qian Qiong. Prognostic value of amphiregulin and epiregulin mRNA expression in metastatic colorectal cancer patients. Oncotarget 7, 55890-55899, 2016.
    43. C Oliveras-Ferraros, S Cufi, B Queralt, A Vazquez-Martin, JA Menendez. Cross-suppression of EGFR ligands amphiregulin and epiregulin and de-repression of FGFR3 signaling contribute to cetuximab resistance in wild-type KRAS tumor cells. British Journal of Cancer 106, 1406-1414, 2012.
    44. Jessica Ribeiro Gomes, Marcelo Rocha S Cruz. Combination of afatinib with cetuximab in patient with EGFR-mutant non-small-cell lung cancer resistant to EGFR inhibitors. OncoTargets and Therapy 8, 1137-1142, 2015.
    45. Roberta Rosa, Roberta Marciano, Umberto Malapelle, Luigi Formiano. Sphingosine kinase 1 overexpression contributes to cetuximab resistance in human colorectal cancer models. Clinical Cancer Research 19, 138-147, 2012.
    46. Carmine Pinto, Carlo Antonio Barone, Giampiero Girolomoni. Management of skin toxicity associated with cetuximab treatment in combination with chemotherapy or radiotherapy. The Oncologist 16, 228-238, 2011.
    47. Shogo Okazaki, Fumi Nakatani, Kazue Masuko, Kenji Tsuchihashi. Development of an ErbB4 monoclonal antibody that blocks neuregulin-1-induced ErbB4 activation in cancer cells. Biochemical and Biophysical Research Communications 470, 239-244, 2016.
    48. Caroline J Witton, Jonathan R Reeves, James J Going, Timothy G Cooke. Expression of the HER1-4 family of receptor tyrosine kinases in breast cancer. Journal of Pathology 200, 290-297, 2003.
    49. 施慶彬,基因重組骨粘連蛋白對臍帶間質幹細胞、牙隨幹細胞與脂肪幹細胞於體外增生影響,國立成功大學生物科技研究所碩士論文,2010。
    50. 黃永敬,利用即時聚合酶連鎖反應技術分析人類大腸直腸癌組織中表皮生長因子接受器及其受質基因之表現,國立成功大學生物科技研究所碩士論文,2009。
    51. 楊偉宏,重組人類表皮調節素的純化與分析,國立成功大學生物科技研究所碩士論文,2015。

    無法下載圖示 校內:2022-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE