研究生: |
黃冠豪 Huang, Kuan-Hao |
---|---|
論文名稱: |
探討植物內生胜肽與線蟲模仿肽在阿拉伯芥中的遠距離訊息調控角色 Investigating the long-distance signaling roles of plant endogenous peptides and nematode-mimic peptides in Arabidopsis thaliana |
指導教授: |
陳盈嵐
Chen, Ying-Lan |
學位類別: |
碩士 Master |
系所名稱: |
生物科學與科技學院 - 生物科技與產業科學系 Department of Biotechnology and Bioindustry Sciences |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 73 |
中文關鍵詞: | 長距離訊號胜肽 、線蟲模仿胜肽 、分根系統 、蛋白體 |
外文關鍵詞: | long-distance signaling peptide, nematode mimic peptide, root-splitting system, proteomic |
相關次數: | 點閱:88 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在植物中,胜肽可透過維管束汁液傳遞以利系統性地調節全身性的生長發育,並且可以在逆境下進行調控響應環境變化以及抵抗病原體。為了探討胜肽的遠距離調控角色,本研究主要使用阿拉伯芥分根系統去探討一系列的胜肽訊號的遠距離傳遞功能,並且提供其近端及遠端調控的表現型證據及蛋白質體變化。這些胜肽包括: (1) 被子植物汁液肽ASAP (Angiosperm Sap Peptide), (2) 阿拉伯芥胜肽AtIDA (Arabidopsis thaliana INFLORESCENCE DEFICIENT IN ABSCISSION), (3) AtRALF33 (Arabidopsis thaliana RAPID ALKALINIZATION FACTOR 33), (4) 南方根瘤線蟲的模仿胜肽MiIDL1(Meloidogyne incognita IDA-like 1), 以及(5) MiRALF1 (Meloidogyne incognita RALF 1) 。其中ASAP是我們最近在多種具有演化代表性的被子植物維管束汁液胜肽體中發現的演化保守長距離移動肽。從前人研究中得知ASAP能夠在阿拉伯芥的培養液中偵測到,加上我們近期已經證實其調控毛果楊及玫瑰桉的木質素單體生合成。所以本研究利用合成的ASAP處理阿拉伯芥後進行染色觀察木質素累積,證明ASAP會進行遠距離訊息傳遞促進遠端未處理的根部的產生木質素累積。另一方面,我們也藉由分根實驗確認了AtIDA、AtRALF33、MiIDL1和MiRALF1皆能夠長距離調控側根生長,並且使用已知IDA和RALF受體的突變株來探討其遠端訊息感測是否與其受體有關。此外,我們分析了這五條胜肽在澆灌處理後的葉片蛋白質體變化,以及在分根實驗中以野生型及受體突變株胜肽處理的蛋白質體變化。發現不管是內生胜肽和線蟲模仿肽處理都會顯著抑制大部分的蛋白體表現,而ASAP則有明顯上調木質素單體生合成的蛋白。而RALF在野生型與受體突變株蛋白質體的定量結果,顯示過氧化物還原活性會被顯著性的下調,與其免疫調控功能有關。在本論文我們利用蛋白體的變化,結合分根實驗表現型的研究,已經證明這些胜肽確實具有長距離訊息移動或是遠端調控的重要角色。
In plants, peptides can be transported through vascular sap to systematically regulate growth and development of whole plant body. The long-distance signaling peptides also found to participate in regulatory responses to environmental changes and resistance against pathogens under stress. To investigate the long-distance signaling roles of peptides, we utilized the Arabidopsis root splitting system to explore the long-distance signaling functions of a series of peptide signals and provide phenotypic evidence and proteomic changes associated with their local and remote regulation. These peptides include: (1) Angiosperm Sap Peptide (ASAP), (2) Arabidopsis thaliana INFLORESCENCE DEFICIENT IN ABSCISSION (AtIDA), (3) Arabidopsis thaliana RAPID ALKALINIZATION FACTOR 33 (AtRALF33), (4) Meloidogyne incognita IDA-like 1 (MiIDL1), and (5) Meloidogyne incognita RALF 1 (MiRALF1). ASAP is an evolutionarily conserved long-distance mobile peptide discovered in the vascular sap peptidome of several representative angiosperms. Previous studies have detected ASAP in the culture medium of Arabidopsis, and we have recently found its regulation of monolignol biosynthesis in Populus trichocarpa and Eucalyptus grandis. Here, we observed the lignin deposition of ASAP-treated Arabidopsis using root splitting system, providing evidence that ASAP undergoes long-distance signaling. On the other hand, we also confirmed that AtIDA, AtRALF33, MiIDL1, and MiRALF1 can regulate lateral root growth over long distances. We used IDA and RALF receptor mutants to investigate whether their long-distance signaling roles are associated with these receptors. Additionally, we analyzed the leaf proteomic changes of these five peptides after irrigation treatment and the local and systemic proteomic changes using the root splitting systems. We found that both endogenous peptides and corresponding nematode mimic peptides significantly inhibit the expression of most proteins, while ASAP specifically regulates proteins involved in lignin monomer biosynthesis. The quantitative proteomic results of RALF in wild-type and receptor mutant showed significant differences in peroxidase activity, indicating its association with immune regulatory functions. Combining proteomic changes with the phenotypic study of root partitioning, we have demonstrated that these peptides indeed play important roles in long-distance information transmission or distal regulation.
Abarca, A., Franck, C.M., and Zipfel, C. Family-wide evaluation of RAPID ALKALINIZATION FACTOR peptides. Plant Physiology 187, 996-1010, 2021.
Abe, M., Kobayashi, Y., Yamamoto, S., Daimon, Y., Yamaguchi, A., Ikeda, Y., Ichinoki, H., Notaguchi, M., Goto, K., and Araki, T. FD, a bZIP Protein Mediating Signals from the Floral Pathway Integrator FT at the Shoot Apex. Science 309, 1052-1056, 2005.
Abualia, R., Benkova, E., and Lacombe, B. Chapter Five - Transporters and Mechanisms of Hormone Transport in Arabidopsis. In Advances in Botanical Research, C. Maurel, ed. (Academic Press), pp. 115-138. 2018.
Bai, S., Kasai, A., Yamada, K., Li, T., and Harada, T. A mobile signal transported over a long distance induces systemic transcriptional gene silencing in a grafted partner. Journal of experimental botany 62, 4561-4570, 2011.
Band, L.R. Auxin fluxes through plasmodesmata. New Phytologist 231, 1686-1692, 2021.
Bergonci, T., Ribeiro, B., Ceciliato, P.H.O., Guerrero-Abad, J.C., Silva-Filho, M.C., and Moura, D.S. Arabidopsis thaliana RALF1 opposes brassinosteroid effects on root cell elongation and lateral root formation. Journal of experimental botany 65, 2219-2230, 2014.
Binenbaum, J., Weinstain, R., and Shani, E. Gibberellin Localization and Transport in Plants. Trends in plant science 23, 410-421, 2018.
Bologna, N.G., and Voinnet, O. The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annu Rev Plant Biol 65, 473-503, 2014.
Boursiac, Y., Léran, S., Corratgé-Faillie, C., Gojon, A., Krouk, G., and Lacombe, B. ABA transport and transporters. Trends in plant science 18, 325-333, 2013.
Butenko, M.A., Patterson, S.E., Grini, P.E., Stenvik, G.-E., Amundsen, S.S., Mandal, A., and Aalen, R.B. Inflorescence deficient in abscission controls floral organ abscission in Arabidopsis and identifies a novel family of putative ligands in plants. The Plant Cell 15, 2296-2307, 2003.
Chen, X., Yao, Q., Gao, X., Jiang, C., Harberd, Nicholas P., and Fu, X. Shoot-to-Root Mobile Transcription Factor HY5 Coordinates Plant Carbon and Nitrogen Acquisition. Current Biology 26, 640-646, 2016.
Colasanti, J., and Sundaresan, V. ‘Florigen’ enters the molecular age: long-distance signals that cause plants to flower. Trends in Biochemical Sciences 25, 236-240, 2000.
Delay, C., Imin, N., and Djordjevic, M.A. CEP genes regulate root and shoot development in response to environmental cues and are specific to seed plants. Journal of experimental botany 64, 5383-5394, 2013.
Escher, P., Eiblmeier, M., Hetzger, I., and Rennenberg, H. Seasonal and spatial variation of carbohydrates in mistletoes (Viscum album) and the xylem sap of its hosts (Populus × euamericana and Abies alba). Physiologia Plantarum 120, 212-219, 2004.
Fletcher, J.C., Brand, U., Running, M.P., Simon, R., and Meyerowitz, E.M. Signaling of Cell Fate Decisions by <i>CLAVATA3</i> in <i>Arabidopsis</i> Shoot Meristems. Science 283, 1911-1914, 1999.
Gheysen, G., and Mitchum, M.G. Phytoparasitic Nematode Control of Plant Hormone Pathways. Plant Physiology 179, 1212-1226, 2018.
Gjetting, S.K., Mahmood, K., Shabala, L., Kristensen, A., Shabala, S., Palmgren, M., and Fuglsang, A.T. Evidence for multiple receptors mediating RALF-triggered Ca2+ signaling and proton pump inhibition. The Plant Journal 104, 433-446, 2020.
Guan, P., Wang, R., Nacry, P., Breton, G., Kay, S.A., Pruneda-Paz, J.L., Davani, A., and Crawford, N.M. Nitrate foraging by <i>Arabidopsis</i> roots is mediated by the transcription factor TCP20 through the systemic signaling pathway. Proceedings of the National Academy of Sciences 111, 15267-15272, 2014.
Guo, X., Wang, J., Gardner, M., Fukuda, H., Kondo, Y., Etchells, J.P., Wang, X., and Mitchum, M.G. Identification of cyst nematode B-type CLE peptides and modulation of the vascular stem cell pathway for feeding cell formation. PLOS Pathogens 13, e1006142, 2017.
Guo, Y., Ni, J., Denver, R., Wang, X., and Clark, S.E. Mechanisms of Molecular Mimicry of Plant CLE Peptide Ligands by the Parasitic Nematode Globodera rostochiensis Plant Physiology 157, 476-484, 2011.
Hannapel, D.J. A Model System of Development Regulated by the Long-distance Transport of mRNA. Journal of integrative plant biology 52, 40-52, 2010.
Hewezi, T., and Baum, T.J. Manipulation of plant cells by cyst and root-knot nematode effectors. Molecular Plant-Microbe Interactions 26, 9-16, 2013.
Hoad, G.V. Transport of hormones in the phloem of higher plants. Plant Growth Regulation 16, 173-182, 1995.
Hubberten, H.-M., Drozd, A., Tran, B.V., Hesse, H., and Hoefgen, R. Local and systemic regulation of sulfur homeostasis in roots of Arabidopsis thaliana. The Plant Journal 72, 625-635, 2012.
Huen, A.K., Rodriguez-Medina, C., Ho, A.Y.Y., Atkins, C.A., and Smith, P.M.C. Long-distance movement of phosphate starvation-responsive microRNAs in Arabidopsis. Plant Biology 19, 643-649, 2017.
Imin, N., Mohd-Radzman, N.A., Ogilvie, H.A., and Djordjevic, M.A. The peptide-encoding CEP1 gene modulates lateral root and nodule numbers in Medicago truncatula. Journal of experimental botany 64, 5395-5409, 2013.
Jaeger, K.E., and Wigge, P.A. FT Protein Acts as a Long-Range Signal in Arabidopsis. Current Biology 17, 1050-1054, 2007.
Kim, J., Yang, R., Chang, C., Park, Y., and Tucker, M.L. The root-knot nematode Meloidogyne incognita produces a functional mimic of the Arabidopsis INFLORESCENCE DEFICIENT IN ABSCISSION signaling peptide. Journal of experimental botany 69, 3009-3021, 2018.
Kramer, E.M., and Bennett, M.J. Auxin transport: a field in flux. Trends in plant science 11, 382-386, 2006.
Kudo, T., Kiba, T., and Sakakibara, H. Metabolism and Long-distance Translocation of Cytokinins. Journal of integrative plant biology 52, 53-60, 2010.
Kumpf, R.P., Shi, C.-L., Larrieu, A., Stø, I.M., Butenko, M.A., Péret, B., Riiser, E.S., Bennett, M.J., and Aalen, R.B. Floral organ abscission peptide IDA and its HAE/HSL2 receptors control cell separation during lateral root emergence. Proceedings of the National Academy of Sciences 110, 5235-5240, 2013.
Lacombe, B., and Achard, P. Long-distance transport of phytohormones through the plant vascular system. Current opinion in plant biology 34, 1-8, 2016.
Le Marquer, M., Bécard, G., and Frei dit Frey, N. Arbuscular mycorrhizal fungi possess a CLAVATA3/embryo surrounding region-related gene that positively regulates symbiosis. New Phytologist 222, 1030-1042, 2019.
Lequeux, H., Hermans, C., Lutts, S., and Verbruggen, N. Response to copper excess in Arabidopsis thaliana: Impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiology and Biochemistry 48, 673-682, 2010.
Lin, S.-I., Chiang, S.-F., Lin, W.-Y., Chen, J.-W., Tseng, C.-Y., Wu, P.-C., and Chiou, T.-J. Regulatory Network of MicroRNA399 and PHO2 by Systemic Signaling Plant Physiology 147, 732-746, 2008.
Lucas, W.J., Groover, A., Lichtenberger, R., Furuta, K., Yadav, S.R., Helariutta, Y., He, X.Q., Fukuda, H., Kang, J., and Brady, S.M. The plant vascular system: evolution, development and functions f. Journal of integrative plant biology 55, 294-388, 2013.
Matsubayashi, Y. Post-Translational Modifications in Secreted Peptide Hormones in Plants. Plant and cell physiology 52, 5-13, 2011.
Mitchum, M.G., Hussey, R.S., Baum, T.J., Wang, X., Elling, A.A., Wubben, M., and Davis, E.L. Nematode effector proteins: an emerging paradigm of parasitism. New Phytologist 199, 879-894, 2013.
Mravec, J., Skůpa, P., Bailly, A., Hoyerová, K., Křeček, P., Bielach, A., Petrášek, J., Zhang, J., Gaykova, V., Stierhof, Y.-D., Dobrev, P.I., Schwarzerová, K., Rolčík, J., Seifertová, D., Luschnig, C., Benková, E., Zažímalová, E., Geisler, M., and Friml, J. Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter. Nature 459, 1136-1140, 2009.
Murashige, T., and Skoog, F. Organic growth factor requirements of tobacco tissue cultures. Physiol Plant 15, 473-497, 1962.
Murphy, E., and De Smet, I. Understanding the RALF family: a tale of many species. Trends in plant science 19, 664-671, 2014.
Ohyama, K., Ogawa, M., and Matsubayashi, Y. Identification of a biologically active, small, secreted peptide in Arabidopsis by in silico gene screening, followed by LC-MS-based structure analysis. The Plant Journal 55, 152-160, 2008.
Okamoto, S., Kawasaki, A., Makino, Y., Ishida, T., and Sawa, S. Long-distance translocation of CLAVATA3/ESR-related 2 peptide and its positive effect on roots sucrose status. Plant Physiology 189, 2357-2367, 2022.
Olsen, A.N., Mundy, J., and Skriver, K. Peptomics, identification of novel cationic Arabidopsis peptides with conserved sequence motifs. In silico biology 2, 441-451, 2002.
Osterlund, M.T., Hardtke, C.S., Wei, N., and Deng, X.W. Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405, 462-466, 2000.
Park, J., Lee, Y., Martinoia, E., and Geisler, M. Plant hormone transporters: what we know and what we would like to know. BMC Biology 15, 93, 2017.
Rep, M., Dekker, H.L., Vossen, J.H., de Boer, A.D., Houterman, P.M., de Koster, C.G., and Cornelissen, B.J.C. A tomato xylem sap protein represents a new family of small cysteine-rich proteins with structural similarity to lipid transfer proteins. FEBS Letters 534, 82-86, 2003.
Roberts, I., Smith, S., De Rybel, B., Van Den Broeke, J., Smet, W., De Cokere, S., Mispelaere, M., De Smet, I., and Beeckman, T. The CEP family in land plants: evolutionary analyses, expression studies, and role in Arabidopsis shoot development. Journal of experimental botany 64, 5371-5381, 2013.
Rutter, W.B., Hewezi, T., Maier, T.R., Mitchum, M.G., Davis, E.L., Hussey, R.S., and Baum, T.J. Members of the Meloidogyne avirulence protein family contain multiple plant ligand-like motifs. Phytopathology 104, 879-885, 2014.
Satoh, S., Iizuka, C., Kikuchi, A., Nakamura, N., and Fujii, T. Proteins and carbohydrates in xylem sap from squash root. Plant and cell physiology 33, 841-847, 1992.
Srivastava, R., Liu, J.-X., Guo, H., Yin, Y., and Howell, S.H. Regulation and processing of a plant peptide hormone, AtRALF23, in Arabidopsis. The Plant Journal 59, 930-939, 2009.
Stegmann, M., Monaghan, J., Smakowska-Luzan, E., Rovenich, H., Lehner, A., Holton, N., Belkhadir, Y., and Zipfel, C. The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling. Science 355, 287-289, 2017.
Stenvik, G.-E., Tandstad, N.M., Guo, Y., Shi, C.-L., Kristiansen, W., Holmgren, A., Clark, S.E., Aalen, R.B., and Butenko, M.A. The EPIP peptide of INFLORESCENCE DEFICIENT IN ABSCISSION is sufficient to induce abscission in Arabidopsis through the receptor-like kinases HAESA and HAESA-LIKE2. The Plant Cell 20, 1805-1817, 2008.
Tabata, R., Sumida, K., Yoshii, T., Ohyama, K., Shinohara, H., and Matsubayashi, Y. Perception of root-derived peptides by shoot LRR-RKs mediates systemic N-demand signaling. Science 346, 343-346, 2014.
Takahashi, F., Hanada, K., Kondo, T., and Shinozaki, K. Hormone-like peptides and small coding genes in plant stress signaling and development. Current opinion in plant biology 51, 88-95, 2019.
Takahashi, F., Suzuki, T., Osakabe, Y., Betsuyaku, S., Kondo, Y., Dohmae, N., Fukuda, H., Yamaguchi-Shinozaki, K., and Shinozaki, K. A small peptide modulates stomatal control via abscisic acid in long-distance signalling. Nature 556, 235-238, 2018.
Tong, X., Liu, S.-Y., Zou, J.-Z., Zhao, J.-J., Zhu, F.-F., Chai, L.-X., Wang, Y., Han, C., and Wang, X.-B. A small peptide inhibits siRNA amplification in plants by mediating autophagic degradation of SGS3/RDR6 bodies. The EMBO Journal 40, e108050, 2021.
Truman, W., Bennett, M.H., Kubigsteltig, I., Turnbull, C., and Grant, M. <i>Arabidopsis</i> systemic immunity uses conserved defense signaling pathways and is mediated by jasmonates. Proceedings of the National Academy of Sciences 104, 1075-1080, 2007.
Vlot, A.C., Klessig, D.F., and Park, S.-W. Systemic acquired resistance: the elusive signal(s). Current opinion in plant biology 11, 436-442, 2008.
Wang, Q., Yang, S., Liu, J., Terecskei, K., Ábrahám, E., Gombár, A., Domonkos, Á., Szűcs, A., Körmöczi, P., Wang, T., Fodor, L., Mao, L., Fei, Z., Kondorosi, É., Kaló, P., Kereszt, A., and Zhu, H. Host-secreted antimicrobial peptide enforces symbiotic selectivity in <i>Medicago truncatula</i>. Proceedings of the National Academy of Sciences 114, 6854-6859, 2017.
Wang, X., Xue, B., Dai, J., Qin, X., Liu, L., Chi, Y., Jones, J.T., and Li, H. A novel Meloidogyne incognita chorismate mutase effector suppresses plant immunity by manipulating the salicylic acid pathway and functions mainly during the early stages of nematode parasitism. Plant Pathology 67, 1436-1448, 2018.
Williamson, V.M., and Hussey, R.S. Nematode pathogenesis and resistance in plants. The Plant Cell 8, 1735, 1996.
Yu, X., Pasternak, T., Eiblmeier, M., Ditengou, F., Kochersperger, P., Sun, J., Wang, H., Rennenberg, H., Teale, W., Paponov, I., Zhou, W., Li, C., Li, X., and Palme, K. Plastid-Localized Glutathione Reductase2–Regulated Glutathione Redox Status Is Essential for Arabidopsis Root Apical Meristem Maintenance The Plant Cell 25, 4451-4468, 2013.
Zhang, X., Peng, H., Zhu, S., Xing, J., Li, X., Zhu, Z., Zheng, J., Wang, L., Wang, B., and Chen, J. Nematode-encoded RALF peptide mimics facilitate parasitism of plants through the FERONIA receptor kinase. Molecular plant 13, 1434-1454, 2020.