簡易檢索 / 詳目顯示

研究生: 鍾紹恩
Chung, Shao-En
論文名稱: 矩形渠道內多孔性材質柱狀鰭片之數值最佳化
Numerical Optimization of Porous Pin Fins in a Rectangular Channel
指導教授: 楊玉姿
Yang, Yue-Tzu
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 115
中文關鍵詞: 多孔性材質柱狀鰭片雙能量方程式數值最佳化基因演算法
外文關鍵詞: porous Pin fins, two energy equations, numerical optimization, GA
相關次數: 點閱:118下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以多目標參數並使用實驗設計(DOE)裡的全因子設計方法(FFED),藉由基因演算法(GA)及計算流體力學(CFD)來設計三維矩形渠道內部設置多孔性材質柱狀鰭片的問題。統御方程式使用了雙方程式能量模型和Forchheimer-Brinkman extended Darcy model 來描述多孔性材質區域的流場與熱傳特性。應用控制體積法的數值方法求解矩形渠道內部設置多孔性材質柱狀鰭片的三維穩態、耦合、橢圓微分方程式的層流強制對流問題。
    研究的參數包含雷諾數(Re = 1000~2300)、多孔性材質柱狀鰭片的高度(h = 6 mm、8 mm、10 mm)以及鰭片間距(p = 4.52 mm、5.52 mm、6.52 mm)。首先將得到的數值結果與參考文獻的數據進行驗證,發現非常吻合。除了參數上的改變,對於圓柱多孔性材質柱狀鰭片以對齊式排列與交錯式排列的熱性能作比較。在數值結果上,可以明顯的發現鰭片高度是流道整體熱傳效率的關鍵參數─不論是在對齊式或是交錯式排列,鰭片高度的增加都會造成流阻的劇烈上昇以及熱阻的急遽下降。而對齊式或是交錯式排列方式的不同對整體熱效益的影響並不十分明顯。
    此外,完成數值結果的驗證後,使用基因演算法來完成圓柱多孔性鰭片的最佳化。選擇的兩個最佳化設計變數,分別是無因次化的鰭片高度(α)以及無因次化的鰭片間距(β)。利用基因演算法求得通過多孔性圓柱鰭片的整體熱傳效率的最大值,其中整體熱傳效率的大小是由熱通量與壓降決定。透過最佳化設計的過程得到的結果,相較於參考的幾何形狀,目標函數已成功地達到改善的效果。所以數值最佳化對於矩形流道內設置多孔性材質柱狀鰭片陣列這樣的熱傳問題,提供了一個可信賴且經濟的方法。

    In this study, the multi-parameter constrained optimization procedure integrating the design of experiments (DOE), full factorial experimental design (FFED), genetic algorithm (GA) and computational fluid dynamics (CFD) is proposed to design three-dimensional porous pin fins in a Rectangular Channel. The Forchheimer-Brinkman extended Darcy model and two-equation energy model are adopted to describe the fluid flow and heat transfer characteristics in the porous media. The elliptical, coupled, steady-state, three-dimensional governing partial differential equations for laminar forced convection with porous pin fins in a rectangular channel are solved numerically using the finite volume approach.
    The parameters studied include Reynolds number (Re = 1000~2300), the height of porous pin fins (h = 6 mm、8 mm、10 mm), and the pitch of porous pin fins (p = 4.52mm、5.52 mm、6.52 mm). The numerical results are first validated with the available data in the literature, and a good agreement has been found. Circular porous pin fins both are in-line and staggered arrangements are compared in the thermal performance. The numerical results show that the fin height is a key flow parameter and the flow resistance increases significantly and the thermal resistance decrease significantly for both in-line and staggered arrangements. The influences of in –line versus staggered array on the overall heat transfer efficiencies are not noticeable.
    In addition,after the validation of the numerical results, genetic algorithm (GA) is applied for the optimization of the porous pin-fin. Two nondimensional variables, pin fin height-to-channel height ratio(α) and pin-fin pitch-to-channel height ratio (β) are chosen as design variables.
    The overall heat transfer efficiency due to heat flux and pressure drop across the porous pin fins is maximized by using GA. Through optimization, the objective function is successfully improved with respect to the reference geometry. The numerical optimization provides a reliable and economic means of designing a heat transfer channel with porous pin fin arrays.

    摘要 ................................................. I 英文摘要 ........................................ III 誌謝 ................................................ V 目錄 ............................................... VI 表目錄 .......................................... IX 符號說明 ..................................... XV 第一章 緒論................................... 1 1-1 研究動機與背景 ........................... 1 1-2 文獻回顧 ................................. 3 1-3 本文探討之主題及研究方法 ................ 10 第二章 理論分析 ............................. 13 2-1 空間流場分析 ............................ 13 2-2 統御方程式的組成 ........................ 15 2-3 邊界條件與介面條件 ...................... 18 2-4 數據計算 ................................ 19 第三章 數值方法 ............................. 20 3-1 差分方程式之推導 ........................ 20 3-1-1 U, V, W 動量方程式之差分方程式 ........ 28 3-1-2 壓力修正方程式 ........................ 29 3-1-3 收斂條件............................... 33 3-2 差分方程式的解法 ........................ 35 3-2-1 代數方程式之解法 ...................... 35 3-2-2 數值程序............................... 37 3-2-3 電腦運算時間 .......................... 38 第四章 最佳化設計 ........................... 40 4-1 概述 .................................... 40 4-2 全因子法 ................................ 40 4-3 迴歸分析 ................................ 41 4-4 基因演算法 .............................. 43 4-4-1 適應度 ................................ 44 4-4-2 基本基因演算法算子 .................... 45 4-4-3 終止條件 .............................. 49 第五章 結果與討論 ........................... 54 5-1 求解參數設定 ............................ 54 5-2 網格獨立測試與數值驗證 .................. 55 5-3 流場與溫度場之特性分析 .................. 56 5-4 最佳化結果分析 .......................... 60 第六章 結論與建議 .......................... 108 6-1 結論 ................................... 108 6-2 建議 ................................... 109 參考文獻 ................................... 111

    [1] Darcy, H., “Les Fontains Publiques de la Ville de Dijon”, Paris, Victor Dallmont, 1856.
    [2] Plumb, O. A., and Huenefled, J. C., “Non-Darcy Natural Convection from Heated Surfaces in Saturated Porous Media”, Int. J. Heat Mass Transfer, Vol.24, pp.765-768, 1981.
    [3] Hsu, C. T., and Cheng, P., “The Brinkman Model for Natural Convection about a Semi-Infinite Vertical Plate in a Porous Medium”, Int. J. Heat Mass Transfer, Vol. 28, pp. 683-697, 1985.
    [4] Vafai, K. and Tien, C. L., “Boundary and Inertia Effects on Flow and Heat Transfer in Porous Media”, Int. J. Heat Mass Transfer, Vol.24, pp. 195-203, 1981.
    [5] Benenati, R. F., and Brosilow, C. B., “Void Fraction Distribution in Beds of Spheres”, AICHE J., Vol.8, PP. 359-361, 1987.
    [6] Cheng, P., “Thermal Dispersion Effects in Non-Darcian Convective Flow in a Saturated Porous Medium”, Lett. Heat Mass Transfer, Vol. 8, pp. 267-270, 1981.
    [7] Plumb, O. A., “The Effect of Thermal Dispersion on Heat Transfer in Packed Bed Boundary Layers”, ASME-JSME Joint Thermal Conference Proc., Vol. 2, pp. 17-21, 1983.
    [8] Hong, J. F., and Tien, C. L., “Ansysis of Thermal Dispersion Effect on Vertical-Palate Nature Convection in Porous Media”, Int. J. Heat Mass Transfer, Vol.30, pp. 143-150, 1987.
    [9] Roblee, L. H. S., Baird, R. M., Tierney, J. W., “Radial Porosity Variations in Packed Beds”, AICHE J 4: pp. 460-464, 1958.
    [10] Benenati, R. F., Brosilow, C. B., “Void Fraction Distribution in Packed Beds”, AICHE J, Vol. 8, pp.359-361, 1962.
    [11] Schwartz, C. E., Smith, J. M., “Flow Distribution in Packed Beds”, Indust Eng Chem Vol. 45, pp.1209-1218, 1952.
    [12] Cheng, P., Chowdhury, A., Hsu, C. T., “Forced Convection in Packed Tubes and Channels with Variable Porosity and Thermal Dispersion Effects”, In:KaKa S. et al. (eds) Convective Heat Mass Transfer in Porous Media, pp. 625-653, 1991.
    [13] Georgiads, J. G., Catton, I., “Stochastic Modeling of Unidirectional Fluid Transport in Uniform and Random Packed Beds”, Phys Fluids Vol. 30, pp. 1017-1022, 1987.
    [14] Catton, I., Georgiads, J. G., Adnani P, “The Impact of Nonlinear Convective Processes on Transport Phenomena in Porous Media”, Proc 1988 National Heat Transfer Conference 1, ASME HTD-96, Houaton, pp.767-777, 1988.
    [15] Georgiads, J. G., “Effect of Randomness on Heat and Mass Transfer in Porous Media”, In: KaKa S. et al. (eds) Convective Heat Mass Transfer in Porous Media, pp. 499-524, 1991.
    [16] Saito, A., Okawa, S., Suzuki T, Maeda H, “Calculation of Permeability of Porous Media Using Direct Simulation Monte Carlo Method”, Proc ASME/JSME Thermal Engineering Joint Conference 3, Maui, pp.297-304, 1995.
    [17] Fu, W. S., Huang, H. C., “Thermal Performances of Different Shape Porous Blocks under an Impinging Jet”, Int. J Heat Mass Transfer, Vol. 40, pp. 2261-2272, 1997.
    [18] Pavel, Bogdan, I., Mohamad, Abdulmajeed, A., “An Experimental and Numerical Study on Heat Transfer Enhancement for Gas Heat Exchangers Fitted with Porous Media”, Int. J. Heat Mass Transfer, Vol. 47, pp. 4939-4952, 2004.
    [19] Huang, P.C., Yang C.F., Hwang, J.J and Chiu, M.T., “Enhancement of Forced- Convection Cooling of Multiple Heated Blocks in a Channel Using Porous Covers”, Int. J. Heat Mass Transfer, Vol. 48, pp. 647-664, 2005.
    [20] Narasimhan, A., Lage, J. L., Nield, D. A., Porneala, D. C.,“Experimental Verification of Two New Theories Predicting Temperature-Dependent Viscosity Effects on The Forced Convection in a Porous Channel”, J. Heat Transfer, Vol. 123, pp. 948-951, 2001.
    [21] Narasimhan, A., Lage, J. L., Nield, D., “A New Theory for Forced Convection through Porous Media by Fluids with
    Temperature-Dependent Viscosity”, J. Heat Transfer, Vol. 123, pp. 1045-1051, 2001.
    [22] Hadim, A., 1994, “Forced Convection in a Porous Channel With Localized Heat Sources,” ASME J. Heat Transfer, 116, pp. 465–472.
    [23] Hadim, A., and Bethancourt, A., 1995, “Numerical Study of Forced Convection in a Partially Porous Channel With Discrete Heat Sources,”ASME J. Electron. Packag., 117, pp. 46–51.
    [24] Huang, P. C., Yang, C. F., Hwang, J. J., and Chui, M. T., 2005,“Enhancement of Forced-Convection Cooling of Multiple Heated Blocks in a Channel Using Porous Covers,” Int. J. Heat Mass Transfer,
    48, pp. 647–664.
    [25] Ko, K. H., and Anand, N. K., 2003, “Use of Porous Baffles to Enhance Heat Transfer in a Rectangular Channel,” Int. J. Heat Mass
    Transfer, 46, pp. 4191– 4199.
    [26] Sathyamurthy, P., Runstadler, P.W., “Numerical and
    Experimental Evaluation of Planar and Staggered Heat Sinks”, Inter Society Conference on Thermal Phenomena, Vol. 5 , No. 7 ,pp. 132-139,1996.
    [27] Sara O.N., “Performance Analysis of Rectangular Ducts with Stggered Square Pin Fins”, Energy Conversion and Management, Vol. 44 , pp. 1787-1803, 2003.
    [28] Josson H. and Palm B., “Thermal and Hydraulic Behavior of Fin and Strip Fin Heat Sinks Under Varying Bypass conditions”, IEEE Transactions on Components and Packaging Technologies, Vol. 23,No.
    1, pp. 47-54, 2000.
    [29] Narasimhan S., Majdalani J., “Characterization of Compact Heat Sink Models in Natural Convection”, IEEE Transactions on Components and Packaging Technologies, Vol. 25 pp.78-86 , 2002 .
    [30] Zhou F., Catton I., “Numerical Evaluation of Flow and Heat Transfer in Plate-Pin Fin Heat Sinks with Various Pin Cross-Sections”, Numerical Heat Transfer Part A: Applications, Vol. 60, pp. 107-128,
    2011.
    [31] Zhao Y.H., Chai C.X., Luo Z.M., “Numerical Simulation Study on Heat Transfer Characteristics of Plate-Pin Fin Oil Cooler”, Design & Manufacture of Diesel Engine, Vol 14, pp.13-15, 2005.(in Chinese)”
    [32] Seyf H. R., Layeghi M., “Numerical Analysis of Convective Heat Transfer From an Elliptic Pin Fin Heat Sink With and Without Metal Foam Insert”, J. Heat transfer, Vol 132, paper no. 071401, 2010.
    [33] Yang J., Zeng M., Wang Q. W., Nakayama A., “Forced ConvectionHeat Transfer Enhancement by Porous Pin Fins in Rectangular Channels”, J. Heat transfer, Vol 132, paper no.051702, 2010.
    [34] Patankar S.V., Numerical Heat Transfer and Fluid Flow,
    McGraw-Hill, New York, 1980.
    [35] (第四章)全因子法.葉怡成, 高等實驗計算法(Advanced Design
    of Experiments),五南圖書公司, 2009.
    [36] Bagley J.D., “The Behavior of Adaptive System which Employ Genetic and Correlation Algorithm,” Dissertation Abstracts International, Vol. 28, 1967.
    [37] De Jong K.A., “An Analysis of the Behavior of a Class of Genetic Adaptive Systems,” PhD Dissertation, University of Michigan, No.76~9381, 1975.
    [38] Goldberg D.E., “Genetic Algorithms in Search, Optimization and Machine Learning,” Addison-Wesley, 1989.
    [39] Davis L.D., “Handbook of Genetic Algorithms,” Van Nostrand Reinhold, 1991.
    [40] Koza J.R., “Genetic Programming, on the Programming of
    Computers by Means of Natural Selection, MIT Press, 1992.
    [41] (第四章) 基因演算法 周明, 孫樹棟, 遺傳算法原理及應用
    (Genetic Algorithms: theory and applications), 國防工業出版社, 1999.

    下載圖示 校內:2015-08-08公開
    校外:2015-08-08公開
    QR CODE