簡易檢索 / 詳目顯示

研究生: 林俊安
Lin, Chun-An
論文名稱: 發光二極體之能帶缺陷對輸出特性影響之研究
The Influence of Defect for Output Characteristics in Light Emitting Diodes
指導教授: 洪茂峰
Houng, Mau-Phon
王永和
Wang, Yeong-Her
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 80
中文關鍵詞: 能帶填充帶尾穿隧機制電激發光
外文關鍵詞: electroluminescence, tail, band filling, tunneling mechanism
相關次數: 點閱:116下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   發光二極體是藉由電子-電洞對在活性層復合,再將其多餘的能量以光子的型式放出,因此在論文中,藉由電性和光性的量測,來更了解及改進其特性。
      透過精密半導參數分析儀,所量得之電壓-電流特性曲線來分析其擴散電流及復合電流;再透過發光二極體元件測試機,所量得之發光強度-電流曲線來分析發光強度與電流之間的關係,還有以電激發光頻譜來研究其復合機制。
      我們藉由電性之量測,發現藍光二極體在低電流區域,有一種別於傳統擴散電流以及復合電流的電流成分存在,根據研究是透過缺陷的一種穿隧機制(Tunneling mechanism),在量測電激發光頻譜時,可以發現隨著電流的增加,放射波峰(Emission peak)會往短波長移動,這種現象是由於能帶填充(Band filling),這是由於注入的電洞藉由穿隧到空的受體雜質能帶及空的價帶帶尾(Valence band tails)。

      The main mechanism of LED is based on the electron-hole recombination in the active layer, and then the energy emitted by the form of photon. In this thesis we try to understand and improve the characteristics by both optical and electrical measurement.
      By the I-V curve obtained by HP4156, we analyze the diffusion and recombination current. By the L-I curve obtained by led tester, we analyze the relation between light output intensity and current, research the mechanism of recombination by electroluminescence spectra.
      By our experiment we can find that there is a current different from other conventional forms in low current injected blue light-emitting diodes, and it is believed as a tunneling mechanism due to defects. By electroluminescence spectra, the emission peak will shift to short wavelength with the increase of current. It is caused by the band filling, which means the holes tunnel to empty acceptor impurity band and valence band tails.

    第一章緒論……………………………………………………………1 1-1 研究背景…………………………………………………………1 1-2 研究動機…………………………………………………………2 第二章原理……………………………………………………………4 2-1 理想的pn電流方程式-(Shockley equation)…………………4 2-1-1 開路時的pn接面二極體…………………………………4 2-1-2 順向偏壓時的pn接面二極體……………………………6 2-1-3 逆向偏壓時的pn接面二極體……………………………10 2-1-4 電壓-電流特性的非理想效應…………………………11 2-2 發光二極體的發光機制-自發輻射……………………………12 2-2-1 常用發光二極體材料……………………………………12 2-2-2 自發輻射的發光機制……………………………………12 2-3 無光輻射復合……………………………………………………15 2-4 p-n 接面的注入發光機制………………………………………17 2-5 自發輻射和電流…………………………………………………18 2-6 色度圖以及顏色純度……………………………………………19 第三章參數分析原理…………………………………………………21 3-1 電壓-電流特性參數的粹取……………………………………21 3-2 發光二極體電壓-電流模型……………………………………21 3-3 電壓-電流模型的驗證…………………………………………24 第四章實驗過程………………………………………………………25 4-1 發光二極體準備…………………………………………………25 4-2 量測儀器…………………………………………………………25 4-3 實驗流程…………………………………………………………26 第五章結果與討論……………………………………………………27 5-1 紅光二極體之探討………………………………………………27 5-2 藍光二極體之探討………………………………………………28 第六章結論……………………………………………………………32 參考文獻………………………………………………………………33

    [1] W. Shockley, “Electrons and Holes in Semiconductors”, Van Nostrand,
    Princeton, 1950.
    [2] C. T. Sah, R. N. Noyce, and W. Shockley, “Carrier generation and
    recombination in p-n-junctions and p-n-junction characteristics,” Proc.
    IRE, Vol. 45, p. 1228, 1957.
    [3] H. Norde, “A modified forward I-V plot for Schottky diodes with high
    series resistance”, J. App. Phys. Vol. 50, NO. 7, pp. 5052-5053, 1979.
    [4] K. Sato and Y. Yasumura, “Study of forward I-V plot for Schottky
    diodes with high series resistance”, J. App. Phys. Vol. 58, NO. 9, pp.
    3655-3657, 1985.
    [5] T. C. Lee, S. Fung, C. D. Beling, and H. L. Au, “A systematic
    approach to the measurement of ideality factor, series resistance, and
    barrier height for Schottky diodes”, J. App. Phys. Vol. 72, NO. 10, pp.
    4739-4742, 1992.
    [6] T. Ishida and H. Ikoma, “Bias dependence of Schottky barrier height
    in GaAs from internal photoemission and current-voltage
    characteristics”, J. App. Phys. Vol. 74, NO. 6, pp. 3977-3982, 1993.
    [7] K. Maeda, H. Ikoma, K. Sato, and T. Ishida, “Current-voltage
    characteristics and interface state density of GaAs Schottky barrier”,
    Appl. Phys. Lett. Vol. 62, pp. 2560-2562, 1993.
    [8] V. Aubry and F. Meyer, “Schottky diodes with high series resistance:
    Limitations of forward I-V methods”, J. App. Phys. Vol. 76, NO. 12,
    pp. 7973-7984, 1994.
    [9] D.D. Damljanovic, “Remodeling the p-n junction”, Circuits and
    Devices Magazine, IEEE , Vol. 9 , Issue: 6 , Pages:35 – 37, Nov.
    1993.
    [10] M. Lyakas, R. Zaharia, and M. Eizenberg, ” Analysis of nonideal
    Schottky and p-n junction diodes—Extraction of parameters from I–V
    plots”, J. App. Phys. Vol. 78, NO. 9, pp. 5481-5489, 1995.
    [11] Y. B. Acharya, and P.D. Vyavahare.; ” Remodeling light emitting
    diode in low current region”, Electron Devices, IEEE Transactions
    on , Vol. 45 , Issue: 7 , pp. 1426 – 1430, 1998.
    [12] V. Mikhelashvili, G. Eisenstein, V. Garber, S. Fainleib, G. Bahir, D.
    Ritter, M. Orenstein, and A. Peer, “On the extraction of linear and
    nonlinear physical parameters in nonideal diodes”, J. App. Phys. Vol.
    85, No. 8, pp. 6873-6883, 1999.
    [13] C. Cane, M. Lozano, I. Gracia, J. Santander, E. Lora-Tamayo, ”
    An easy technique for determining diffusion and
    generation-recombination components of the current of pn junctions
    for better modelling”, Microelectronic Test Structures, 1993. ICMTS
    1993. Proceedings of the 1993 International Conference on , 22-25 ,
    Pages:167 – 170, 1993.
    [14] D. A. Neamen, “Semiconductor Physics & Devices”, Second
    Edition, McGraw-Hill, 1999.
    [15] S. M. Sze, “Semiconductor Devices Physics and Technology”, 2/H’,
    John Wiley & Sons, 2002.
    [16] S. O. Kasap, “Optoelectronics and Photonics Principles and
    Practices”, Prentice Hall, 2001.
    [17] E. Fred Schubert, “Light-Emitting Diodes”, the Nuited Kingdom at
    the University Press, 2003.
    [18] 彭江得, ”光電子技術基礎”, 儒林圖書有限公司, 1993.
    [19] M. Fukuda, “Optical Semiconductor Devices”, NTT
    Opto-electronics Laboratories Kanagawa, Japan, 1999.
    [20] 工業技術研究院產業經濟與資訊服務中心,”2000 光電工業綜
    論”,2000.
    [21] 陳中豪, 蔣培瑜, “光源色度量測原理”, 工業材料雜誌, 208 期,
    2004.
    [22] A. S. Grove, “Physics and Technology of Semiconductor Devices”,
    New York, Wiley, p.p. 187. 1967.
    [23] H. C. Casey, Jr., J. Muth, S. Krishnankutty, and J. M. Zavada,
    “Dominance of tunneling current and band filling in InGaN/AlGaN
    double heterostructure blue light-emitting diodes”, Appl. Phys. Lett.,
    Vol. 68, pp. 2867-2869, 1996.
    [24] I. Mártil, E. Redondo, and A. Ojeda, “Influence of defects on the
    electrical and optical characteristics of blue light-emitting diodes
    based on III–V nitrides”, J. Appl. Phys., Vol. 81, pp. 2442-2444, 1997.
    [25] X. A. Cao, E. B. Stokes, P. M. Sandvik, S. F. LeBoeuf, J. Kretchmer,
    and D. Walker, “Diffusion and tunneling currents in GaN/InGaN
    multiple quantum well light-emitting diodes”, Electron Device Letters,
    IEEE , Volume: 23 , Issue: 9 , Sept., Pages:535 – 537, 2002.
    [26] S. Nakamura, T. Mukai, and M. Senoh, “High-brightness
    InGaN/AlGaN double-heterostructure blue-green-light-emitting
    diodes”, J. Appl. Phys. Vol. 76, pp. 8189-8191, 1994.
    [27] S. D. Lester, F. A. Ponce, M. G. Craford, and D. A. Steigerwald,
    “High dislocation densities in high efficiency GaN-based
    light-emitting diodes”, Appl. Phys. Lett. Vol. 66, pp. 1249-1251,
    1995.
    [28] P. Perlin, M. Osi ski, P. G. Eliseev, V. A. Smagley, J. Mu, M. Banas,
    and P. Sartori, “Low-temperature study of current and
    electroluminescence in InGaN/AlGaN/GaN double-heterostructure
    blue light-emitting diodes”, Appl. Phys. Lett., Vol. 69, pp. 1680-1682,
    1996.
    [29] H. C. Casey JR. , Donald J. Silversmith, “Radiative tunneling in
    GaAs Abrupt Asymmetrical Junctions”, J. Appl. Phys. Vol. 40, 1969.
    [30] L. S. Yu, Q. Z. Liu, Q. J. Xing, D. J. Qiao, S. S. Lau, and J.
    Redwing, ”The role of the tunneling component in the
    current--voltage characteristics of metal-GaN Schottky diodes”, Appl.
    Phys., Vol. 84, pp. 2099, 1998.
    [31] H. C. Casey Jr. , R. Z. Bachrach, “Electroluminescent shifting-peak
    spextra in GaAs with uniform excition”, J. Appl. Phys. Vol. 44, No. 6,
    1973.
    [32] O. Langerstedt, B. Monemar, and H.Gislason, “Properties of GaN
    tunneling MIS light-emitting diodes”, J. Appl. Phys. Vol. 49, pp.2953
    1978.
    [33] A. Shintani and S. Minagawa, “Electric properties of GaN
    light-emitting diodes”, J. Appl. Phys. Vol.48 , pp.1522, 1977.
    [34] E. Pinkas, B. I. Miller, I. Hayashi, and P. W. Foy, “GaAs-AlXGa1-XAs
    Double Heterostructure Laser-Effectof Doping on Lasing
    Characteristics of GaAs”, J. Appl. Phys. Vol. 43, pp. 2827, 1972.
    [35] G. B. Stringfellow, M. G. Craford, “High Brightness Light Emitting
    Diodes”, Academic press, 1997.
    [35] B. I. Miller, E. Pinkas, I. Hayashi, R. J. Capik, “Reproducible
    Liquid-Phase-Epitaxial Growth of Double Heterostructure
    GaAs-AlXGa1-XAs Laser Diodes”, J. Appl. Phys.Vol. 43,
    pp.2817-2826, 1972.
    [37] J. F. Womac, and R. H. Rediker, “The Graded-Gap
    AlXGa1-XAs-GaAs Heterojunction”, Vol. 43, J. Appl. Phys.
    pp.4129-4133, 1972.
    [38] H. Kressel, J. V. Dunse, H. Nelson, and F. Z.
    Hawrylo, ”Luminescence in silicon-Doped GaAs Grown by
    Liquid-Phase Epitaxy”, J. Appl. Phys. Vol. 39, pp. 2006, 1968.
    [39] N. E. Byer, “Electroluminescence in Amphoteric silicon-Doped
    GaAs Diodes. Ll. Transient Response”, J. Appl. Phys. Pp. 1602-1607,
    1970.
    [40] K. L. Ashley, and Doerberk, “Investigation of Gallium Arsenide
    Emission Diode Characteristics with Transistor Structures”, J. Appl.
    Phys. Vol. 42, pp.4493-4499, 1971.
    [41] M. llegems, R. Dingle, and R. A. Logan, “Luminescence of Zn- and
    Cd-doped GaN”, J. Appl. Phys. Vol.43, pp. 3797-3800, 1972.

    下載圖示 校內:2006-07-13公開
    校外:2007-07-13公開
    QR CODE