簡易檢索 / 詳目顯示

研究生: 王培宇
Wang, Pei-Yu
論文名稱: 基於高階轉折理論之三明治板結構有限元素公式開發
Developments of finite element formulations for sandwich plates based on higher-order refined zigzag theory
指導教授: 陳重德
Chen, Chung-De
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 119
中文關鍵詞: 高階轉折理論有限元素法三明治板
外文關鍵詞: Higher-order zigzag theory, Finite element method, Sandwich plate
相關次數: 點閱:37下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目標旨在發展高階轉折理論(Higher-order refined zigzag theory, HRZT)於疊層板結構之應用,包含推導HRZT板結構之平衡方程式,與發展以HRZT為理論基礎之板元素。近期,有學者已針對三明治複合樑發展出高階轉折理論,以解決其靜態彎曲響應的問題。本研究延伸了這一理論的應用範疇,將其應用於三明治複合板中。
    本研究中,面內位移假設為高階轉折函數,使得本理論能夠滿足上、下自由表面之面外剪應力為零,以及層與層交界面上的剪應力連續性。為解決線性靜態橫向負載下的位移和應力,我們開發了三種四邊形板元素:HRZT4N36(具有4個主要結點和總共36個自由度之HRZT板元素)、HRZT8N72(具有8個主要結點和總共72個自由度之HRZT板元素)和HRZT4N40(具有4個主要結點和總共40個自由度之HRZT板元素)。其中HRZT4N40在不顯著增加計算量的同時,可有效解決剪力自鎖問題。
    透過與FSDT板元素、HSDT板元素、RZT板元素之有限元素模型和ANSYS三維有限元素模型的結果進行比較,驗證了HRZT板元素在三明治複合板中包含撓度、面內外移、正向應力、面內剪應力、面外剪應力和剪力的準確性。此外本研究也對不同的面外剪應力和剪力的計算方法進行了比較,並根據結果提出推薦方法。
    根據本計畫中呈現的數值結果,證明了HRZT板元素能夠準確描述三明治複合板的靜態線性現象,其有限元素公式及其數值結果可應用於航空工程、海洋工程、土木工程和機械工程等多個領域。

    This study aims at developing the applications of sandwich plates based on higher-order refined zigzag theory (HRZT). It involves derivations of the equilibrium equations of HRZT plates, and development of plate elements based on HRZT. Recently, the HRZT for static bending response of sandwich composite beams has been developed. This study extends the application range of this theory to sandwich plate structures.
    In order to solve the linear static responses of displacements and stresses under transverse load, we have developed three types of quadrilateral plate elements, including HRZT4N36, HRZT8N72, and HRZT4N40. Among these, HRZT4N40 effectively resolves the shear locking phenomenon with slight increase in computational cost.
    The in-plane displacements, deflections, normal stresses, in-plane shear stresses, out-of-plane shear stresses and shear forces calculated by HRZT plate elements have been compared with those of FSDT, HSDT, RZT plate elements and 3-D FEM model. It is proved that the solutions based on HRZT are reliable to linear static analysis for sandwich plates. This study also compared different methods for calculating the out-of-plane shear stresses and shear forces. A suggested method is provided according to the results.
    Based on the numerical results in this study, it has been demonstrated that HRZT plate elements can accurately describe the static linear behavior of sandwich plates. The formulations of HRZT plates developed in this study are applicable to aerospace engineering, naval engineering, civil engineering and mechanical engineering, etc.

    摘要 I 誌謝 IX 目錄 X 表目錄 XII 圖目錄 XIII 符號說明 XVI Chapter 1 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 各式板理論介紹 2 1.2.2 HRZT樑理論 7 1.3 研究動機本文架構 9 Chapter 2 HRZT板之平衡方程式與有限元素公式推導 11 2.1 HRZT板平衡方程式推導 11 2.2 HRZT板之有限元素公式推導 25 2.2.1 基於HRZT板之有限元素公式推導 25 2.2.2 基於HRZT開發之三種板元素 27 Chapter 3 三明治複合板有限元素結果-位移 31 3.1 收斂性與剪力自鎖 32 3.2 有限元素之橫向位移結果 35 3.3 有限元素之面內位移結果 42 Chapter 4 三明治複合板有限元素結果-應力與剪力 51 4.1 有限元素之正向應力結果 51 4.2 有限元素之面內剪應力結果 68 4.3 有限元素之面外剪應力結果 75 4.4 有限元素之剪力與等效剪力分布 89 Chapter 5 結論與未來展望 93 5.1 結論 93 5.2 未來展望 94 參考文獻 95

    [1] Reddy J. N. A generalization of two-dimensional theories of laminated composite plates. Communications in Applied Numerical Methods, Vol. 3, 173-180, 1987.
    [2] Thai H. T. and Choi D. H. A simple first-order shear deformation theory for laminated composite plates. Composite Structures, Vol. 106, 754-763, 2013.
    [3] Wang S. Free vibration analysis of skew fibre-reinforced composite laminates based on first-order shear deformation plate theory. Computers & Structures, Vol. 63, 525-538, 1997.
    [4] Cen S. and Shang Y. Developments of Mindlin-Reissner Plate Elements. Mathematical Problems in Engineering, Vol. 2015, 456740, 2015.
    [5] Tessler A. and Hughes T. J. R. A three-node Mindlin plate element with improved transverse shear. Computer Methods in Applied Mechanics and Engineering, Vol. 50, 71-101, 1985.
    [6] Lo K.H., Christensen R.M., and Wu E.M. A high-order theory of plate deformation—part 1 homogeneous plates. Journal of Applied Mechanics, Vol. 44, 663-676, 1977.
    [7] Reddy J. N. A Simple higher-order theory for laminated composite plates. Journal of Applied Mechanics, Vol. 51, 745-782, 1984.
    [8] Phan N. D. and Reddy J. N. Analysis of laminated composite plates using a higher-order shear deformation theory. International Journal for Numerical Methods for Engineering, Vol. 21, 2201-2219, 1985.
    [9] Kant T., Owen D.R.J., and Zienkiewicz O.C. A refined higher-order C0 plate bending element. Computers and Structures, Vol. 15, 177-183, 1982.
    [10] Sudha S., Ramesh, Wang C.M., Reddy J. N. and Ang K. K. A higher-order plate element for accurate prediction of interlaminar stresses in laminated composite plates. Composite Structures, Vol. 91, 337-357, 2009.
    [11] Sheikh A. H. and Chakrabarti A. A new plate bending element based on higher-order shear deformation theory for the analysis of composite plates. Finite Elements in Analysis and Design, Vol. 39, 883–903, 2003.
    [12] Mantari J. L. and Soares C. G. Finite element formulation of a generalized higher order shear deformation theory for advanced composite plates. Composite Structures, Vol. 96, 545–553, 2013.
    [13] Meiche N. E., Tounsi A., Ziane N., Mechab I., Bedia E. A. A. A New hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate. International Journal of Mechanical Science, Vol. 53, 237–247, 2011.
    [14] Daouadji T. H., Henni A. H., Tounsi A., Bedia E.A.A. A new hyperbolic shear deformation theory for bending analysis of functionally graded plates. Modelling and Simulation in Engineering, Vol. 2012, 1–10, 2012.
    [15] Daouadji T. H., Tounsi A., Bedia E. A. A. A new higher order shear deformation model for static behavior of functionally graded plates. Advances in Applied Mathematics and Mechanics, Vol. 5, 351–364., 2013.
    [16] Grover N., Singh B. N. and Maiti D. K. Analytical and finite element modeling of laminated composite and sandwich plates: An assessment of a new shear deformation theory for free vibration response. International Journal of Mechanical Science, Vol. 67, 89-99, 2013.
    [17] Mahi A., Bedia E. A. A., and Tounsi A. A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates. Applied Mathematical Modelling, Vol. 39, 2489–2508, 2015.
    [18] Gupta A. and Talha M. Nonlinear flexural and vibration response of geometrically imperfect gradient plates using hyperbolic higher-order shear and normal deformation theory. Composites B: Engineering, Vol. 123, 241-261, 2017.
    [19] Mantari J. L., Oktem A. S., Soares C. G. A new higher order shear deformation theory for sandwich and composite laminated plates. Composites Part B Engineering, Vol. 43, 1489–1499, 2012.
    [20] Mantari J. L, Oktem A. S., Soares C. G. A new trigonometric shear deformation theory for isotropic, laminated composite and sandwich plates. International Journal of Solids and Structures, Vol. 49, 43–53, 2012.
    [21] Huang N.N. Influence of shear correction factors in the higher order shear deformation laminated shell theory, Int. J. Solids Structures, Vol. 31, 1263–1277.
    [22] Murakami H. Laminated composite plate theory with improved in-plane responses. Journal of Applied Mechanics, Vol. 53, 661–666, 1986.
    [23] Di Sciuva M. Bending, vibration and buckling of simply supported thick multilayered orthotropic plates: an evaluation of a new displacement model. Journal of Sound and Vibration, Vol. 105, 425–442, 1986.
    [24] Iurlaro L., Gherlone M., Di Sciuva M., Tessler A. Assessment of the refined zigzag theory for bending, vibration, and buckling of sandwich plates: a comparative study of different theories, Composite Structures, Vol. 106, 777–792, 2013.
    [25] Demasi L. Refined multilayered plate elements based on Murakami zig–zag functions. Composite Structures, Vol. 70, 308–316, 2005.
    [26] Sorrenti M., Di Sciuva M. and Tessler A. A robust four-node quadrilateral element for laminated composite and sandwich plates based on Refined Zigzag Theory. Computers and Structures, Vol. 242, 106369, 2021.
    [27] Dorduncu M., Kutlu A. and Madenci E. Triangular C0 continuous finite elements based on refined zigzag theory {2, 2} for free and forced vibration analyses of laminated plates. Composite Structures, Vol. 281, 115058, 2022.
    [28] Eijo A., Oñate E. and Oller S. A four-noded quadrilateral element for composite laminated plates/shells using the refined zigzag theory. International Journal for Numerical Methods in Engineering, Vol. 95, 631-660, 2013.
    [29] Eijo A., Oñate E. and Oller S. Delamination in laminated plates using the 4-noded quadrilateral QLRZ plate element based on the refined zigzag theory. Composite Structures, Vol. 108, 456–471, 2014.
    [30] Wimmer H. and Celigoj C. An edge-based smoothed three-node composite plate element with refined zigzag kinematics. Composite Structures, Vol. 274, 114204, 2021.
    [31] Versino D., Gherlone M., Mattone M., Di Sciuva M. and Tessler A. C0 triangular elements based on the Refined Zigzag Theory for multilayer composite and sandwich plates. Composites: Part B, Vol. 44, 218–230, 2013.
    [32] Barut A., Madenci E. and Tessler A. C0-continuous triangular plate element for laminated composite and sandwich plates using the {2, 2} – Refined Zigzag Theory. Composite Structures, Vol. 106, 835–853, 2013.
    [33] Chen, C. D., & Huang, B. F. A novel higher-order refined zigzag theory for static bending analysis in sandwich composite beam. Applied Mathematical Modelling, 119, 586-604, 2023.
    [34] Chen, C. D., & Chen, Y. H. Linear static, geometric nonlinear static and buckling analyses of sandwich composite beams based on higher-order refined zigzag theory. Composite Structures, Vol. 339, 118131, 2024.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE