簡易檢索 / 詳目顯示

研究生: 陳人愷
Chen, Ren-Kai
論文名稱: LaMnO3波洛斯凱特觸媒之Mn4+與非晶格氧於乙醇行醇醛縮合為四碳產物之研究
The Aldolization Nature of Mn4+-Nonstoichiometric Oxygen Pair Site of Perovskite-type LaMnO3 in Conversion of Ethanol to C4 products
指導教授: 林裕川
Lin, Yu-Chuan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 74
中文關鍵詞: 醇醛縮合1,3-丁二烯乙醇波洛斯凱特非晶格氧
外文關鍵詞: Aldol condensation, Butadiene, Ethanol, Nonstoichiometric oxygen, Perovskite
相關次數: 點閱:99下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 乙醇轉化為四碳產物大多需藉由酸鹼雙功能觸媒方可進行。具波洛斯凱特結構的LaMnO3觸媒因同時擁有路易士酸(Mn4+)與路易士鹼(非晶格氧)的配位,因此可推測LaMnO3對於乙醇轉化為四碳產物應具有催化活性。故本實驗將LaMnO3擔載於二氧化矽上後探討不同Mn4+與非晶格氧組成比例對於乙醇轉化為四碳產物(包含1,3-丁二烯或與正丁醇)之影響。
    將LaMnO3擔載於二氧化矽上之後發現,隨著LaMnO3尺徑縮小可提高Mn4+與非晶格氧之含量。乙醇轉化的結果也顯示未擔載在二氧化矽上之LaMnO3只有將乙醇脫氫形成乙醛的能力而不具備醇醛縮合之活性(極少四碳產物的生成);隨著Mn4+與非晶格氧之含量上升,1,3-丁二烯之選擇率也隨之上升。由物化性的鑑定發現Mn4+與非晶格氧的組成比例上升,觸媒表面的酸性與酸強度也有上升的趨勢。本實驗也以中間物(乙醛與巴豆醛)為共同反應物的方式探討乙醇在LaMnO3觸媒上轉化時之速率決定步驟。結果顯示醇醛縮合 (aldol-condensation)為速率決定步驟。以Mn4+與非晶格氧之路易士酸鹼對行乙醇轉化為四碳產物之反應機制亦被提出。

    This study reports that the C2-C2 aldolization in ethanol conversion to C4 products, particularly butadiene, can be catalyzed by silica supported LaMnO3 catalysts. The concentration and strength of Mn4+ was discovered to be related to the particle size of supported LaMnO3: the smaller the particle size, the higher the concentration and acidity of Mn4+. This concurrently increases the amount of weak basic nonstoichiometric oxygen, by which the surface concentration of Lewis acid-base adduct can be elevated. The Mn4+/nonstoichiometric oxygen pair is intrinsically active in C2-C2 aldolization, and the concentration of the paired site is positively correlated to the selectivity of C4 products. Accordingly, a plausible mechanism of aldolization of acetaldehyde molecules into C4 products mediated by the Mn4+/nonstoichiometric oxygen adduct of LaMnO3 was established.

    目錄 摘要 i Abstract ii 誌謝 xi 圖目錄 xv 表目錄 xvii 前言 1 第一章 文獻回顧 2 1.1 乙醇轉化之反應路徑 2 1.2 乙醇於異相觸媒轉化之機制探討 4 1.3 波洛斯凱特觸媒之特性 8 1.4 波洛斯凱特觸媒應用於酸鹼催化反應 11 第二章-實驗與方法 13 2.1 X光繞射儀 13 2.2 全自動化學吸脫附儀 14 2.3 氮氣吸脫附儀 17 2.4 同步熱分析儀 19 2.5 傅立葉轉換紅外光譜儀 20 2.6 氣相層析儀 23 2.7 穿透式電子顯微鏡 26 2.8 感應耦合電漿放射光譜儀 27 2.9 氣體產物定量以及分析 28 2.10 觸媒合成及製備方式 31 2.10.1 二氧化矽載體前處理 31 2.10.2 Bulk-LaMnO3 合成 31 2.10.3 LaMnO3 擔載於二氧化矽 31 2.11 觸媒反應性測試 32 2.12 實驗藥品與設備 33 第三章-結果與討論 35 觸媒組成與命名 35 3.1 觸媒物理性質鑑定 37 3.1.1 觸媒比表面積以及組成測試 37 3.1.2 觸媒之XRD繞射結果 39 3.1.3 觸媒之穿透式電子顯微鏡影像 40 3.2 觸媒化學性質鑑定 42 3.2.1 觸媒XPS鑑定 42 3.2.2 氫氣程溫還原測試(H2-TPR) 44 3.2.3 氨氣及二氧化碳程溫脫附測試(NH3-TPD and CO2-TPD) 46 3.2.4 吡啶吸附之傅立葉轉換紅外光譜分析(Pyridine-IR) 48 3.2.5 二氧化碳吸附之傅立葉轉換紅外光譜分析(CO2-IR) 49 3.2.6 異丙醇轉化測試(Decomposition of IPA as a probe reaction) 51 3.3 觸媒反應性測試 52 3.3.1 觸媒之乙醇反應性測試 52 3.3.2 觸媒表面之毒化反應性測試 54 3.3.3乙醇轉化為四碳產物之速率決定步驟探討 56 3.3.4 LaMnO3於乙醇催化機制探討 59 3.4 非晶格氧之探討 61 3.4.1 非晶格氧移除測試(O2-TPD) 61 3.4.2 非晶格氧移除後之氫氣程溫還原(2nd-TPR) 62 3.4.3 非晶格氧移除後之XRD繞射結果 64 3.4.5 非晶格氧移除後之二氧化碳吸附紅外光譜分析 65 3.4.4 非晶格氧移除後之乙醇反應性測試 67 3.5 反應機制推測 69 結論 70 參考文獻 71

    1. 工業技術研究院環境能源研究所, 生質酒精之生產與利用. 2006.
    2. Nakajima, T., et al., Conversion of ethanol to acetone over zinc oxide—calcium oxide catalyst optimization of catalyst preparation and reaction conditions and deduction of reaction mechanism. Applied Catalysis, 1989. 52(3): p. 237-248.
    3. Doğan, O., The influence of n-butanol/diesel fuel blends utilization on a small diesel engine performance and emissions. Fuel, 2011. 90(7): p. 2467-2472.
    4. Goh, C.S. and K.T. Lee, A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development. Renewable and Sustainable Energy Reviews, 2010. 14(2): p. 842-848.
    5. Saxena, R.C., D.K. Adhikari, and H.B. Goyal, Biomass-based energy fuel through biochemical routes: A review. Renewable and Sustainable Energy Reviews, 2009. 13(1): p. 167-178.
    6. Guerbet, M., C. R. Acad. Sci., 1899. 128: p. 1002-1004.
    7. Lebedev, S.V., J. Gen. Chem., 1933. 3: p. 698-708.
    8. Lebedev, S.V., FR. 1929: p. 665-917.
    9. G.Natta, R.R., Chem. Ind, 1947(29): p. 195-201.
    10. Quattlebaum, W.M., W.J. Toussaint, and J.T. Dunn, Deoxygenation of Certain Aldehydes and Ketones: Preparation of Butadiene and Styrene1. Journal of the American Chemical Society, 1947. 69(3): p. 593-599.
    11. Bhattacharyya, S.K. and S.K. Sanyal, Kinetic study on the mechanism of the catalytic conversion of ethanol to butadiene. Journal of Catalysis, 1967. 7(2): p. 152-158.
    12. Niiyama, H., S. Morii, and E. Echigoya, Butadiene Formation from Ethanol over Silica-Magnesia Catalysts. Bulletin of the Chemical Society of Japan, 1972. 45(3): p. 655-659.
    13. Angelici, C., et al., Influence of acid-base properties on the Lebedev ethanol-to-butadiene process catalyzed by SiO2-MgO materials. Catalysis Science & Technology, 2015. 5(5): p. 2869-2879.
    14. Makshina, E.V., et al., Review of old chemistry and new catalytic advances in the on-purpose synthesis of butadiene. Chemical Society Reviews, 2014. 43(22): p. 7917-7953.
    15. Di Cosimo, J.I., et al., Structure and Surface and Catalytic Properties of Mg-Al Basic Oxides. Journal of Catalysis, 1998. 178(2): p. 499-510.
    16. Kvisle, S., A. Aguero, and R.P.A. Sneeden, Transformation of ethanol into 1,3-butadiene over magnesium oxide/silica catalysts. Applied Catalysis, 1988. 43(1): p. 117-131.
    17. Biaglow, A.I., et al., A 13C NMR study of the condensation chemistry of acetone and acetaldehyde adsorbed at the Brønsted acid sites in H-ZSM-5. Journal of Catalysis, 1995. 151(2): p. 373-384.
    18. Jones, M.D., et al., Investigations into the conversion of ethanol into 1,3-butadiene. Catalysis Science & Technology, 2011. 1(2): p. 267-272.
    19. Sushkevich Vitaly, L., et al., Design of a Metal‐Promoted Oxide Catalyst for the Selective Synthesis of Butadiene from Ethanol. ChemSusChem, 2014. 7(9): p. 2527-2536.
    20. Ordomsky, V.V., V.L. Sushkevich, and I.I. Ivanova, Study of acetaldehyde condensation chemistry over magnesia and zirconia supported on silica. Journal of Molecular Catalysis A: Chemical, 2010. 333(1): p. 85-93.
    21. Ho, C.R., S. Shylesh, and A.T. Bell, Mechanism and Kinetics of Ethanol Coupling to Butanol over Hydroxyapatite. ACS Catalysis, 2016. 6(2): p. 939-948.
    22. Goldschmidt, V.M., Die Gesetze der Krystallochemie. Naturwissenschaften, 1926. 14(21): p. 477-485.
    23. Peña, M.A. and J.L.G. Fierro, Chemical Structures and Performance of Perovskite Oxides. Chemical Reviews, 2001. 101(7): p. 1981-2018.
    24. Misono, M., Chapter 3 - Catalysis of Perovskite and Related Mixed Oxides, in Studies in Surface Science and Catalysis, M. Misono, Editor. 2013, Elsevier. p. 67-95.
    25. Zhu, H., P. Zhang, and S. Dai, Recent Advances of Lanthanum-Based Perovskite Oxides for Catalysis. ACS Catalysis, 2015. 5(11): p. 6370-6385.
    26. Polo‐Garzon, F., et al., Controlling Reaction Selectivity through the Surface Termination of Perovskite Catalysts. Angewandte Chemie International Edition, 2017. 56(33): p. 9820-9824.
    27. Foo, G.S., Z.D. Hood, and Z. Wu, Shape Effect Undermined by Surface Reconstruction: Ethanol Dehydrogenation over Shape-Controlled SrTiO3 Nanocrystals. ACS Catalysis, 2018. 8(1): p. 555-565.
    28. Töpfer, J. and J.B. Goodenough, LaMnO3+δRevisited. Journal of Solid State Chemistry, 1997. 130(1): p. 117-128.
    29. Van Roosmalen, J.A.M., et al., The Defect Chemistry of LaMnO3±δ: 2. Structural Aspects of LaMnO3+δ. Journal of Solid State Chemistry, 1994. 110(1): p. 100-105.
    30. Yahia, M. and H. Batis, Properties of Undoped and Ca‐Doped LaMnO3 − Non‐Stoichiometry and Defect Structure. European Journal of Inorganic Chemistry, 2003. 2003(13): p. 2486-2494.
    31. Hammami, R., et al., Cation-deficient lanthanum manganite oxides: Experimental and theoretical studies. Solid State Sciences, 2009. 11(4): p. 885-893.
    32. Chu, C., et al., Correlation between the acid-base properties of the La2O3 catalyst and its methane reactivity. Physical Chemistry Chemical Physics, 2016. 18(24): p. 16509-16517.
    33. Kapran, A.Y., S.A. Solov'ev, and V.M. Vlasenko, Chemisorption and oxidative decomposition of pyridine on hydrated manganese dioxide. Theoretical and Experimental Chemistry, 2000. 36(2): p. 94-97.
    34. Polo-Garzon, F. and Z. Wu, Acid-base catalysis over perovskites: a review. Journal of Materials Chemistry A, 2018. 6(7): p. 2877-2894.
    35. Tesquet, G., et al., Ethanol reactivity over La1+x FeO3+δ perovskites. Vol. 511. 2016. 141-148.
    36. Trikalitis, P.N. and P.J. Pomonis, Catalytic activity and selectivity of perovskites La1−xSrxV1−x3+Vx4+O3 for the transformation of isopropanol. Applied Catalysis A: General, 1995. 131(2): p. 309-322.
    37. Foo, G.S., et al., Acid–Base Reactivity of Perovskite Catalysts Probed via Conversion of 2-Propanol over Titanates and Zirconates. ACS Catalysis, 2017. 7(7): p. 4423-4434.
    38. Kuhn, J.N. and U.S. Ozkan, Surface properties of Sr- and Co-doped LaFeO3. Journal of Catalysis, 2008. 253(1): p. 200-211.
    39. Araujo, G.C.d., et al., Catalytic evaluation of perovskite-type oxide LaNi1−xRuxO3 in methane dry reforming. Catalysis Today, 2008. 133-135: p. 129-135.
    40. Di Castro, V. and G. Polzonetti, XPS study of MnO oxidation. Journal of Electron Spectroscopy and Related Phenomena, 1989. 48(1): p. 117-123.
    41. Wang, L., et al., Catalytic combustion of vinyl chloride over Sr doped LaMnO3. Catalysis Today.
    42. Malavasi, L., Role of defect chemistry in the properties of perovskite manganites. Journal of Materials Chemistry, 2008. 18(28): p. 3295-3308.
    43. Kaddouri, A., S. Ifrah, and P. Gelin, A study of the Influence of the Synthesis Conditions upon the Catalytic Properties of LaMnO3.15 in Methane Combustion in the Absence and Presence of H2S. Catalysis Letters, 2007. 119(3): p. 237-244.
    44. Levasseur, B. and S. Kaliaguine, Methanol oxidation on LaBO3 (B=Co, Mn, Fe) perovskite-type catalysts prepared by reactive grinding. Applied Catalysis A: General, 2008. 343(1): p. 29-38.
    45. Najjar, H., et al., Optimization of the combustion synthesis towards efficient LaMnO3+y catalysts in methane oxidation. Applied Catalysis B: Environmental, 2011. 106(1): p. 149-159.
    46. Liu, Y., et al., Controlled preparation and high catalytic performance of three-dimensionally ordered macroporous LaMnO3 with nanovoid skeletons for the combustion of toluene. Journal of Catalysis, 2012. 287: p. 149-160.
    47. Zaki, M.I., et al., In situ FTIR spectra of pyridine adsorbed on SiO2–Al2O3, TiO2, ZrO2 and CeO2: general considerations for the identification of acid sites on surfaces of finely divided metal oxides. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001. 190(3): p. 261-274.
    48. Tamura, M., K.-i. Shimizu, and A. Satsuma, Comprehensive IR study on acid/base properties of metal oxides. Applied Catalysis A: General, 2012. 433-434: p. 135-145.
    49. Kline, C.H. and J. Turkevich, The Vibrational Spectrum of Pyridine and the Thermodynamic Properties of Pyridine Vapors. The Journal of Chemical Physics, 1944. 12(7): p. 300-309.
    50. Ferwerda, R., J.H. van der Maas, and F.B. van Duijneveldt, Pyridine adsorption onto metal oxides: an ab initio study of model systems. Journal of Molecular Catalysis A: Chemical, 1996. 104(3): p. 319-328.
    51. Philipp, R. and K. Fujimoto, FTIR spectroscopic study of carbon dioxide adsorption/desorption on magnesia/calcium oxide catalysts. The Journal of Physical Chemistry, 1992. 96(22): p. 9035-9038.
    52. Morterra, C., et al., An infrared spectroscopic investigation of the surface properties of magnesium aluminate spinel. Journal of Catalysis, 1978. 51(3): p. 299-313.
    53. Gervasini, A., et al., Microcalorimetric and Catalytic Studies of the Acidic Character of Modified Metal Oxide Surfaces. 1. Doping Ions on Alumina, Magnesia, and Silica. The Journal of Physical Chemistry, 1995. 99(14): p. 5117-5125.
    54. Gervasini, A., J. Fenyvesi, and A. Auroux, Study of the acidic character of modified metal oxide surfaces using the test of isopropanol decomposition. Catalysis Letters, 1997. 43(3): p. 219-228.
    55. Zhang, M. and Y. Yu, Dehydration of Ethanol to Ethylene. Industrial & Engineering Chemistry Research, 2013. 52(28): p. 9505-9514.
    56. Ogo, S., et al., 1-Butanol synthesis from ethanol over strontium phosphate hydroxyapatite catalysts with various Sr/P ratios. Journal of Catalysis, 2012. 296: p. 24-30.
    57. Pomalaza, G., et al., Recent Breakthroughs in the Conversion of Ethanol to Butadiene. Catalysts, 2016. 6(12).
    58. La-Salvia, N., J.J. Lovón-Quintana, and G.P. Valença, VAPOR-PHASE CATALYTIC CONVERSION OF ETHANOL INTO 1,3-BUTADIENE ON Cr-Ba/MCM-41 CATALYSTS. Brazilian Journal of Chemical Engineering, 2015. 32: p. 489-500.
    59. Leon, M., E. Díaz, and S. Ordóñez, Ethanol catalytic condensation over Mg–Al mixed oxides derived from hydrotalcites. Vol. 164. 2011. 436-442.
    60. Larina, O.V., P.I. Kyriienko, and S.O. Soloviev, Ethanol Conversion to 1,3-Butadiene on ZnO/MgO–SiO2 Catalysts: Effect of ZnO Content and MgO:SiO2 Ratio. Catalysis Letters, 2015. 145(5): p. 1162-1168.
    61. Han, Z., et al., Sol-gel synthesis of ZrO2-SiO2 catalysts for the transformation of bioethanol and acetaldehyde into 1,3-butadiene. RSC Advances, 2015. 5(126): p. 103982-103988.
    62. Yamazoe, N., Y. Teraoka, and T. Seiyama, TPD AND XPS STUDY ON THERMAL BEHAVIOR OF ABSORBED OXYGEN IN La<SUB>1−x</SUB>Sr<SUB>x</SUB>CoO<SUB>3</SUB>. Chemistry Letters, 1981. 10(12): p. 1767-1770.

    下載圖示 校內:2018-08-30公開
    校外:2018-08-30公開
    QR CODE