| 研究生: |
許晉源 Hsu, Chin-Yuan |
|---|---|
| 論文名稱: |
運用卡方分布及核密度估計於藍姆波檢測複合材料板多重損傷位置之研究 A Study on Lamb Wave based Multi-damage Localizations on Composite Plates by Using Chi-square Distribution and Kernel Density Estimation |
| 指導教授: |
陳重德
Chen, Chung-De |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 結構健康監測 、藍姆波 、損傷位置識別 、卡方分布 、核密度估計 |
| 外文關鍵詞: | Structural Health Monitoring, Lamb wave, Damage location identification, Chi Square distribution, Kernel Density Estimation |
| 相關次數: | 點閱:90 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在航空領域中,結構在服役過程中可能受到多種因素如疲勞、撞擊和環境侵蝕等影響,進而產生結構損傷。近年來結構健康監測(Structural Health Monitoring, SHM)廣泛應用,本研究提出一種壓電致動之藍姆波,採用具有壓電效應之PZT傳感器黏貼於(Carbon Fiber Reinforced Polymer , CFRP)結構表面,用於激發與接收藍姆波(Lamb wave),通過對比損傷前後的訊號差異,可以有效地識別和定位結構內的損傷。
本研究基於能量法計算損傷指數(Damage Index, DI),並將各路徑定義成相對應的DI值。利用卡方分布進行計算各路徑之p值(p value)並保留低於特定閾值之路徑,通過保留路徑所產生之交點使用核密度估計(Kernel Density Estimation, KDE)分別對於x與y軸進行繪製核密度曲線,從而區分出單一與多重損傷情況,同時排除因路徑重疊所產生的誤判交點,最終根據篩選後的交點進行確定潛在損傷的位置。
本文提出損傷符號N_s與加權分數β以進行損傷定位指標(damage localization index, DLI)計算,並與文獻演算法進行比較,結果顯示本研究演算法於準確率高於文獻演算法約15%,並比較各演算法之多重損傷判定方法、閥值挑選、損傷範圍繪製,提供一種對於多重損傷判定更靈活的用法。
In aerospace applications, structural are vulnerable to factors like fatigue, impact, and environmental corrosion, cause structural damage. Structural health monitoring (SHM) has been widely applicable in recent years. This study uses PZTs with piezoelectric effect used to be adhered on the surface of Carbon Fiber Reinforced Polymer (CFRP) to generate and receive the Lamb waves. By analyzing wave dispersions with the existence of the damage, its location can be effectively identified.
The Damage Index (DI) is calculated based on energy method. With each path assigned a DI value, it forms a chi-squared distribution. For a path that its p-value is less than a threshold, it is preserved for damage localizations. By using Kernel Density Estimation (KDE), the probability density curves along the x and y axes from the intersections of preserved paths. Based on algorithm, one can distinguish the situation of one-damage or multiple-damage in one subset. The false intersection by overlap paths can be also eliminated. Ultimately, the potential damage localizations are identified from the filtered intersection points.
This research proposed damage symbols (N_s) and weighted score (β) to compute the damage localization index (DLI), which is compared with the existing algorithm in the literature. The results show a 15% increase in accuracy by the comparisons. The damage localization method, threshold selection and damage range determination are also compared among various algorithms, providing a more flexible approach to identify multiple-damage localizations.
[ 1 ] Park, G., Cudney, H. H., & Inman, D. J. (2000). An integrated health monitoring technique using structural impedance sensors. Journal of Intelligent Material Systems and Structures, 11(6), 448-455.
[ 2 ] Park, G., Sohn, H., Farrar, C. R., & Inman, D. J. (2003). Overview of piezoelectric impedance-based health monitoring and path forward. Shock and vibration digest, 35(6), 451-464.
[ 3 ] Park, G., & Inman, D. J. (2007). Structural health monitoring using piezoelectric impedance measurements. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1851), 373-392.
[ 4 ] Baptista, F. G., & Vieira Filho, J. (2009). A new impedance measurement system for PZT-based structural health monitoring. IEEE Transactions on Instrumentation and Measurement, 58(10), 3602-3608.
[ 5 ] Na, S., & Lee, H. K. (2012). Resonant frequency range utilized electro-mechanical impedance method for damage detection performance enhancement on composite structures. Composite Structures, 94(8), 2383-2389.
[ 6 ] Baker, A. A. (2004). Composite materials for aircraft structures. AIAA.
[ 7 ] Hashish, M., & Kent, W. (2013, September). Trimming of CFRP aircraft components. In WJTA-IMCA conference and Expo.
[ 8 ] Soutis, C. (2005). Fibre reinforced composites in aircraft construction. Progress in aerospace sciences, 41(2), 143-151.
[ 9 ] Hashish, M., & Kent, W. (2013, September). Trimming of CFRP aircraft components. In WJTA-IMCA conference and Expo.
[ 10 ] Saleem, M., Toubal, L., Zitoune, R., & Bougherara, H. (2013). Investigating the effect of machining processes on the mechanical behavior of composite plates with circular holes. Composites Part A: Applied Science and Manufacturing, 55, 169-177.
[ 11 ] Wang, C., Liu, G., An, Q., & Chen, M. (2017). Occurrence and formation mechanism of surface cavity defects during orthogonal milling of CFRP laminates. Composites Part B: Engineering, 109, 10-22.
[ 12 ] Singh, A. P., Sharma, M., & Singh, I. (2013). A review of modeling and control during drilling of fiber reinforced plastic composites. Composites Part B: Engineering, 47, 118-125.
[ 13 ] Chen, C. D., Shen, Y. J., Chou, P. Y., & Wang, P. H. (2024). A Lamb-wave based SHM for multi-damage localizations in large composite plates by using piezoelectric transducer array. Smart Materials and Structures, 33(4), 045028.
[ 14 ] 沈玉杰 (2022) “應用藍姆波監測於複合材料疊層板受衝擊後之損傷位置識別,” 國立成功大學,碩士論文
[ 15 ] 周秉義 (2023) “考慮溫度補償於藍姆波檢測複合材料疊層板損傷位置識別之實驗研究,” 國立成功大學,碩士論文
[ 16 ] 洪嘉志 (2023) “蜂巢式佈置之蘭姆波壓電感測器陣列應用於大面積平板結構的健康偵測,” 國立成功大學,碩士論文
[ 17 ] Liang, C., Sun, F. P., & Rogers, C. A. (1994). Coupled electro-mechanical analysis of adaptive material systems—determination of the actuator power consumption and system energy transfer. Journal of intelligent material systems and structures, 5(1), 12-20.
[ 18 ] Cuc, A., Giurgiutiu, V., Joshi, S., & Tidwell, Z. (2007). Structural health monitoring with piezoelectric wafer active sensors for space applications. AIAA journal, 45(12), 2838-2850.
[ 19 ] Rathod, V. T., & Mahapatra, D. R. (2010). Lamb wave based monitoring of plate-stiffener deboding using a circular array of piezoelectric sensors. International Journal on Smart Sensing and Intelligent Systems, 3(1), 27-44.
[ 20 ] Jiao, P., Egbe, K. J. I., Xie, Y., Matin Nazar, A., & Alavi, A. H. (2020). Piezoelectric sensing techniques in structural health monitoring: A state-of-the-art review. Sensors, 20(13), 3730.
[ 21 ] LeBlanc, M., Huang, S. Y., Ohn, M., Guemes, A., & Othonos, A. (1996). Distributed strain measurement based on a fiber Bragg grating and its reflection spectrum analysis. Optics letters, 21(17), 1405-1407.
[ 22 ] Guemes, J. A., & Menéndez, J. M. (2002). Response of Bragg grating fiber-optic sensors when embedded in composite laminates. Composites science and technology, 62(7-8), 959-966.
[ 23 ] Ramakrishnan, M., Rajan, G., Semenova, Y., & Farrell, G. (2016). Overview of fiber optic sensor technologies for strain/temperature sensing applications in composite materials. Sensors, 16(1), 99.
[ 24 ] Farrar, C. R., Doebling, S. W., & Nix, D. A. (2001). Vibration–based structural damage identification. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 359(1778), 131-149.
[ 25 ] Zhu, L., Fu, Y., Chow, R., Spencer Jr, B. F., Park, J. W., & Mechitov, K. (2018). Development of a high-sensitivity wireless accelerometer for structural health monitoring. Sensors, 18(1), 262.
[ 26 ] De Luca, A., Perfetto, D., De Fenza, A., Petrone, G., & Caputo, F. (2020). Guided wave SHM system for damage detection in complex composite structure. Theoretical and Applied Fracture Mechanics, 105, 102408.
[ 27 ] De Pauw, B., Goossens, S., Geernaert, T., Habas, D., Thienpont, H., & Berghmans, F. (2017). Fibre bragg gratings in embedded microstructured optical fibres allow distinguishing between symmetric and anti-symmetric lamb waves in carbon fibre reinforced composites. Sensors, 17(9), 1948.
[ 28 ] Mori, N., Biwa, S., & Kusaka, T. (2019). Damage localization method for plates based on the time reversal of the mode-converted Lamb waves. Ultrasonics, 91, 19-29.
[ 29 ] Lin, B., & Giurgiutiu, V. (2006). Modeling and testing of PZT and PVDF piezoelectric wafer active sensors. Smart Materials and Structures, 15(4), 1085.
[ 30 ] Güemes, A. (2013, November). SHM technologies and applications in aircraft structures. In Proceedings of the 5th International Symposium on NDT in Aerospace, Singapore (Vol. 1315, p. 4).
[ 31 ] Worden, K., Farrar, C. R., Manson, G., & Park, G. (2007). The fundamental axioms of structural health monitoring. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 463(2082), 1639-1664.
[ 32 ] Michaels, J. E., & Michaels, T. E. (2005). Detection of structural damage from the local temporal coherence of diffuse ultrasonic signals. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 52(10), 1769-1782.
[ 33 ] Diaz Valdes, S. H., & Soutis, C. (2000). Health monitoring of composites using Lamb waves generated by piezoelectric devices. Plastics, Rubber and Composites, 29(9), 475-481.
[ 34 ] Giurgiutiu, V., Bao, J., & Zhao, W. (2001, August). Active sensor wave propagation health monitoring of beam and plate structures. In Smart Structures and Materials 2001: Smart Structures and Integrated Systems (Vol. 4327, pp. 234-245). SPIE.
[ 35 ] Memmolo, V., Ricci, F., Maio, L., Boffa, N. D., & Monaco, E. (2016, April). Model assisted probability of detection for a guided waves based SHM technique. In Health Monitoring of Structural and Biological Systems 2016 (Vol. 9805, pp. 38-49). SPIE.
[ 36 ] Torkamani, S., Roy, S., Barkey, M. E., Sazonov, E., Burkett, S., & Kotru, S. (2014). A novel damage index for damage identification using guided waves with application in laminated composites. Smart Materials and Structures, 23(9), 095015.
[ 37 ] Qing, X. P., Chan, H. L., Beard, S. J., & Kumar, A. (2006). An active diagnostic system for structural health monitoring of rocket engines. Journal of intelligent material systems and structures, 17(7), 619-628.
[ 38 ] Gao, H., Shi, Y., & Rose, J. L. (2005, April). Guided wave tomography on an aircraft wing with leave in place sensors. In AIP Conference Proceedings (Vol. 760, No. 1, pp. 1788-1794). American Institute of Physics.
[ 39 ] Gresil, M., Giurgiutiu, V., Shen, Y., & Poddar, B. (2012, July). Guidelines for using the finite element method for modeling guided Lamb wave propagation in SHM processes. In 6th European workshop on structural health monitoring (pp. 3-6).
[ 40 ] Torkamani, S., Roy, S., Barkey, M. E., Sazonov, E., Burkett, S., & Kotru, S. (2014). A novel damage index for damage identification using guided waves with application in laminated composites. Smart Materials and Structures, 23(9), 095015.
[ 41 ] Franke, T. M., Ho, T., & Christie, C. A. (2012). The chi-square test: Often used and more often misinterpreted. American journal of evaluation, 33(3), 448-458.
[ 42 ] Worden, K., Manson, G., & Fieller, N. R. (2000). Damage detection using outlier analysis. Journal of Sound and vibration, 229(3), 647-667.
[ 43 ] Yue, N., Khodaei, Z. S., & Aliabadi, M. H. (2021). Damage detection in large composite stiffened panels based on a novel SHM building block philosophy. Smart Materials and Structures, 30(4), 045004.
[ 44 ] Yu, L., & Su, Z. (2012). Application of kernel density estimation in lamb wave-based damage detection. Mathematical problems in engineering, 2012, 1-24.
[ 45 ] Dai, J., Liu, Y., Chen, J., & Liu, X. (2020). Fast feature selection for interval-valued data through kernel density estimation entropy. International Journal of Machine Learning and Cybernetics, 11, 2607-2624.
[ 46 ] Okabe, A., Satoh, T., & Sugihara, K. (2009). A kernel density estimation method for networks, its computational method and a GIS‐based tool. International Journal of Geographical Information Science, 23(1), 7-32.
[ 47 ] Pant, S., Laliberte, J., Martinez, M., & Rocha, B. (2014). Derivation and experimental validation of Lamb wave equations for an n-layered anisotropic composite laminate. Composite Structures, 111, 566-579.
[ 48 ] Kudela, P., Ostachowicz, W., & Żak, A. (2008). Damage detection in composite plates with embedded PZT transducers. Mechanical Systems and Signal Processing, 22(6), 1327-1335.
[ 49 ] 謝嘉浤.(2021) “藍姆波結構健康監測系統於單剪力金属搭接結構及複合材料補片修補金屬裂纹結構之應用,” 國立成功大學,碩士論文, 碩士論文
[ 50 ] Salgado-Ugarte, I. H., & Perez-Hernandez, M. A. (2003). Exploring the use of variable bandwidth kernel density estimators. The stata journal, 3(2), 133-147.