簡易檢索 / 詳目顯示

研究生: 林增興
Lin, Tseng-Hsing
論文名稱: 薄膜覆晶結構與垂直結構高效率藍光氮化鎵-基發光二極體之研製及其光輸出功率改善研究
Improving the Light Output Power of Vertically-Structured and Thin-Film Flip-Chip GaN-Based High Power Light-Emitting Diodes
指導教授: 王水進
Wang, Shui-Jinn
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2016
畢業學年度: 105
語文別: 英文
論文頁數: 99
中文關鍵詞: 發光二極體垂直結構覆晶表面出光金屬基板階梯電極設計雷射剝離雷射燒蝕溝槽
外文關鍵詞: light-emitting diodes, vertical-structured, flip-chip, thin-film, metallic-substrate, laser lift-off, surface roughening, trench etching, nanostructure, laser ablation
相關次數: 點閱:102下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文除提出一種於氮化鎵-基(GaN-based)藍光發光二極體 (light-emitting diode, LED)之磊晶晶圓之磊晶表面上,製備歐姆接觸層、反射層、阻擋層及附著層之多層金屬結構,利用晶圓接合鎢銅基板製程或電鍍鎳金屬基板製程,以及利用準分子雷射 (KrF laser) 進行藍寶石(sapphire)基板剝離製程,成功製備具金屬基板之薄膜覆晶結構發光二極體(thin-film flip-chip LED, TFFC-LED)及垂直結構發光二極體 (vertically-structured LED, VLED)外,亦另於LED之磊晶表面進行粗化製程,降低磊晶與空氣間之全反射角,進行光輸出功率之改善。相較於傳統水平結構藍寶石基板發光二極體(regular LED),TFFC-LED與VLED因採用高反射率之反射層結構及厚導電金屬基板(50~80 m)改善p型GaN (p-GaN)電流擴散能力不佳之缺點,亦同時提升LED元件導熱能力、降低串聯電阻、減少電流叢聚效應(current crowding effect)與降低電極遮蔽率增加發光面積等優點。
    為進一步提高LED於固態照明應用範圍,本研究亦提出多種表面出化技術,以增強TFFC-LED及VLED光析出效率。首先,利用柵欄形狀與樹枝形狀電極圖案設計,以及利用感應耦合電漿(inductively coupled plasma, ICP)乾蝕刻製程,於VLED之n型GaN (n-GaN)表面製備圖案化二次階梯表面形貌,提出一個能有效改善電流擴散的VLED結構。此方法所製備之VLED相較於傳統的VLED,於操作在350 mA (700 mA)電流下,其最佳光輸出效率增加33.3 (38.4)%。
    其次,為增進VLED光析出效率,本研究開發一種圖案化壕溝蝕刻及圖案化p型電極。此壕溝蝕刻穿透VLED發光層,將VLED切割成多顆微晶粒亦並聯成同一個元件,藉由壕溝蝕刻增加VLED側面壁之面積,提升側面出光面積。於相同元件面積1×1 mm2條件下(包含蝕刻溝槽),相較傳統大面積單顆VLED,利用4顆微晶粒並聯之VLED於操作在350 mA (700 mA)電流下,其最佳光輸出效率增加9.0% (12.1%)。
    此外,為進一步使用壕溝蝕刻製程增進VLED光析出效率,本研究開發一種利用低成本水熱法製程及黃光製程,於VLED之n-GaN表面成長圖案化氧化鋅奈米線作為蝕刻遮罩,藉由ICP乾蝕刻製程,成功製備具奈米結構之圖案化溝槽粗化結構。因此溝槽並未穿透VLED發光層,對元件的內部量子效應並無損害。實驗結果顯示,藉由溝槽以及奈米粗化結構,確可增加VLED側面以及正面出光面積,降低GaN磊晶與空氣間之全反射角,相較於未進行粗化製程之VLED,此方法所製備之VLED於操作在350 mA (700 mA)電流下,其最佳光輸出效率增加37.6% (33.9%)。
    最後,本研究提出一種利用準分子雷射燒蝕製程,接續熱KOH濕蝕刻粗化TFFC-LED之未摻雜GaN (u-GaN) 所製造出半球圓弧突起物附加六角錐形狀,增加TFFC-LED正面出光面積,降低GaN磊晶與空氣間之全反射角。相較於未進行粗化製程之TFFC-LED,於操作電流350 mA (700 mA),雷射脈衝150 pulses之兩階段粗化之TFFC-LED光輸出功率增加13.08% (12.81%)。
    本論文所開發適用於GaN-based VLED與及TFFC-LED之電流擴散結構與表面粗化結構之製程,具簡易與快速之優點,不需另購多餘昂貴機台,有效提升LED之光輸出功率及光轉換效率,預期可加速GaN-based LED於固態照明應用。

    The dissertation aims at improving the light output power (LOP) and wall-plug efficiency (WPE) of vertical-structured and thin-film flip-chip GaN(gallium nitride)-based LEDs (VLEDs and TFFC-LEDs). The thin-GaN structure and metallic-substrate of VLEDs and TFFC-LEDs were fabricated via nickel electroplating, CuW substrates wafer bonding and laser lift-off (LLO) techniques. As compared with traditional lateral-structured GaN-based LEDs with sapphire substrate (abbreviated as regular LEDs), VLEDs and TFFC-LEDs have many advantages. It includes a conducting substrate prepared on the surface of p-type GaN (p-GaN) layer, which provides a better heat dissipation, lower series resistance, less current crowding effect, lower shading ratio of contact electrode, and larger effective emission area. Top of the n-GaN epilayer with low sheet resistance (~1×10-3 Ω∙cm) and thick thickness (1~3 μm) can improved current spreading and protect the active layer (light emitting layer, multi quantum well) of LED during surface roughing process with chemical etching.
    To further increase external emission efficiency, different surface roughening technique were also proposed for the fabrication of VLEDs and TFFC-LEDs in this study. First, an efficient current spreading design of ladder-type surface roughening through the use of an inductively coupled plasma (ICP) and 2-step mesa etching on n-GaN. An optimal n-electrodes design to strengthen the uniformity of current distribution and LOP of high power VLEDs with a chip size of 1×1 mm2 is demonstrated. The present design allows the patterned n-electrodes having their distances to the active region of VLED decreases with increasing their lateral distances to the contact pad, which could balance the difference in voltage drops on the n-GaN layer as encountered in conventional VLEDs. Consequently, as compared to conventional VLED with flat n-GaN structure, the proposed VLEDs shows the highest increase in LOP by 33.3% (38.4%) at 350 mA.
    Second, GaN-based VLEDs with trench etching and arrayed p-electrodes in improving current spreading and the efficiency of light extraction were fabricated and investigated. For a 2 × 2 array VLED with a die size of 1020 × 1020 μm2, enhancements in LOP by 0.38% and WPE by 2.79% at 364.4 mA/mm2 as compared with that of regular VLED were achieved experimentally, which are attributed to improved current spreading from the arrayed p-electrode and trench designs as well as enhanced light emission from the trench region.
    In addition, an efficient surface texturing technique that uses patterned trench etching and selective formation of GaN nanostructures on the trench bottoms to improve the light extraction of VLEDs is proposed and demonstrated. Compared with conventional VLEDs, significant improvements in LOP and WPE at 350 mA of about 37.6% and 5.1%, respectively, were obtained. It is noted that the effective lateral light emission harvested by patterned trenches and the strongly enhanced angular randomization of photons that minimizes the total internal reflection at the GaN/air interface are responsible for the LOP and WPE improvements.
    Finally, to further enhance the light extraction efficiency of GaN-based TFFC-LEDs, a surface roughening technique using KrF excimer laser ablation and chemical wet etching is also demonstrated. With the proposed twofold surface texturing scheme with circular protrusions superimposed by hexagonal cones, the angular randomization of photons at the emission surface was maximized, enhancements in LOP of 13.08% and WPE of 2.87% at 350 mA compared to those of a TFFC-LED without surface texturing were obtained.
    It is highly expected that VLEDs and TFFC-LEDs in associating with the efficient surface roughening scheme could be very potential for the promotion of SSL in the near future.

    Contents Abstract (in Chinese) I Abstract (in English) IV Acknowledgements VII Contents VIII Table captions XI Figure captions XII Chapter 1 Introduction 1-1 Overview of GaN-based high power LEDs 1 1-2 Issues of external quantum efficiency in GaN-based LEDs 4 1-3 Substrate transfer engineering of VLEDs and TFFC-LEDs 10 1-3.1 Metal electroplating 12 1-3.2 Wafer bonding 13 1-3.3 Laser lift-off 14 1-3.4 Surface roughening techniques 17 1-4 Motivations and thesis organization 18 Chapter 2 Use of a two-step etching on n-GaN surface and an optimal dendritic-shaped n-electrode design to improve current spreading in vertical-structured GaN-based LEDs 2-1 Introduction 21 2-2 Device fabrication 22 2-3 Results and discussion 26 2-3.1 Current density distribution simulation 26 2-3.2 Electrical and optical characteristics 29 2-4 Summary 33 Chapter 3 Enhanced light emission in vertical-structured GaN-based LEDs with trench etching and arrayed p-electrodes 3-1 Introduction 35 3-2 Device fabrication 36 3-3 Results and discussion 39 3-3.1 Surface morphology 39 3-3.2 Ray-tracing simulation and current density distribution simulation 40 3-3.3 Electrical and optical characteristics 44 3-4 Summary 48 Chapter 4 Enhanced light extraction of GaN-based vertical LEDs with patterned trenches and nanostructures 4-1 Introduction 49 4-2 Device fabrication 51 4-3 Results and discussion 54 4-3.1 Surface morphology 54 4-3.2 Ray-tracing simulation 56 4-3.3 Electrical and optical characteristics 57 4-4 Summary 61 Chapter 5 Improving the performance of power GaN-based thin-film flip-chip LEDs through a twofold roughened surface 5-1 Introduction 62 5-2 Device fabrication 63 5-3 Results and discussion 67 5-3.1 Surface morphology 67 5-3.2 EDS analysis 70 5-3.3 Ray-tracing simulation 70 5-3.4 Electrical and optical characteristics 73 5-4 Summary 76 Chapter 6 Conclusions and suggestions for future study 6-1 Conclusions 77 6-2 Suggestions for future study 81 References 84 Table captions Table 1-1 SSL-LEDs Metric Roadmap by U. S. department of energy (DOE) [1.27] 3 Table 2-1 Shading ratio of fence-shaped and dendritic-shaped n-electrodes 26 Table 2-2 Structural parameters used in the Crosslight APSYS simulation 29 Table 2-3 The measured optical characteristics of fabricated VLEDs. 33 Table 3-1 Structural parameters used in the Crosslight APSYS simulation 43 Table 3-2 Ray-tracing calculated results obtained from a TracePro simulation 43 Table 6-1 Conclusions of all technologies in this dissertation 81 Figure captions Fig. 1-1 Bandgap energies of InN, GaN, AlN, and the ternary alloys InxGa1−xN and AlyGa1−yN with a rainbow depiction of the visible spectrum. [1.23] 2 Fig. 1-2 The evolution and anticipated performance of LEDs and other light sources versus development time [1.28] 4 Fig. 1-3 EQE and peak wavelength of high-power LEDs based on the InGaN light emitting layer and InGaAlP light emitting layer material systems [1.31] 6 Fig. 1-4 Plot of IQE, measured using PL, versus wavelength of III-nitride quantum-well structures [1.32] 7 Fig. 1-5 Refraction of light at the interface between air and GaN, including total internal reflection 8 Fig. 1-6 Fresnel power transmittance from GaN to air 9 Fig. 1-7 Schematic diagram of nickel electroplating scheme used in this dissertation 13 Fig. 1-8 Schematic diagram of wafer boning scheme used in this dissertation 14 Fig. 1-9 Schematic diagram of KrF excimer laser system of KrF excimer laser beam source and BDS for excimer laser 15 Fig. 1-10 Laser lift-off process 16 Fig. 1-11 Temporal and spatial variation of the temperature at the sapphire/GaN interface (depth zero) during and after a KrF excimer laser pulse [1.60] 17 Fig. 2-1 Key fabrication processes of VLEDs with a two-step etching on n-GaN surface or an optimal dendritic-shaped n-electrode design 23 Fig. 2-2 Schematic device structures of VLEDs. (a) VLED-A with a ladder-type n-GaN and fence-shaped n-electrode. (b) VLED-B with a ladder-shaped n-GaN and a dendritic-shaped n-electrode. (c) VLED-C with a fence-shaped n-electrode and a ladder morphology of n-GaN right under patterned n-electrode 25 Fig. 2-3 Schematic fence-shaped and dendritic-shaped n-electrode of VLEDs. 26 Fig. 2-4 (a) Schematic current path of VLEDs with intact flat and ladder-shaped n-GaN. (b) The calculated current density distribution across the active region of VLEDs by Crosslight simulation 28 Fig. 2-5 Near-field emission intensity images of fabricated VLEDs measured beam profile at 350 and 700 mA 31 Fig. 2-6 Comparison of V-I and LOP-I characteristics among various fabricated VLEDs 32 Fig. 2-7 Comparison of reverse I-V characteristics among various fabricated VLEDs 32 Fig. 2-8 Comparison of WPE-I characteristics among various fabricated VLEDs. 32 Fig. 3-1 Key fabrication processes of VLEDs in this work 38 Fig. 3-2 Exploded view drawings, OM, and SEM images of the proposed VLEDs. (a) Regular VLED, (b) VLED-A, and (c) VLED-B. The cross-sectional structure of the fabricated sample is also shown in (a). The active region of VLEDs comprises a five-period GaN/InGaN MQWs structure. 40 Fig. 3-3 (a) Ray-tracing calculated results obtained from a TracePro simulation. (b) Current density distribution at the bottom layer of the active region and (c) LOP-J/LOP-I characteristics of the three VLEDs obtained from Crosslight simulation 43 Fig. 3-4 (a) OM images of light emission at different current densities measured using a beam profile. (b) Distribution of light intensity along broken line AA’ shown in Fig. 4-1(a) 45 Fig. 3-5 Forward I-V characteristics of the fabricated VLEDs. Inset shows reverse I-V curves 47 Fig. 3-6 LOP-J/LOP-I characteristics of the fabricated VLEDs. 47 Fig. 3-7 WPE-J/WPE-I characteristics of the fabricated VLED 47 Fig. 4-1 Key fabrication processes of VLEDs with patterned trenches and selective formation of GaN nanostructures on trench bottoms 53 Fig. 4-2 SEM images of n-GaN surface of fabricated VLEDs. 55 Fig. 4-3 Schematics of the simulated VLEDs used in the ray-tracing simulation. The calculated near-field emission intensity images obtained from ray-tracing simulations 57 Fig. 4-4 Light emission from the fabricated VLEDs at 100 mA. The (a) Images of near-field emission intensity measured by a beam profiler and (b) mappings of light emission intensity along path a-b 59 Fig. 4-5 Forward I-V characteristics of the fabricated VLEDs. Inset shows reverse I-V curves 60 Fig. 4-6 LOP-I curves of fabricated VLEDs 60 Fig. 4-7 WPE-I curves of fabricated VLEDs 60 Fig. 5-1 Key fabrication processes of TFFC-LEDs with u-GaN surface roughening achieved by KrF excimer laser irradiation and chemical wet etching 66 Fig. 5-2 SEM images of u-GaN surface of TFFC-LEDs: (a) without etching process (LED-A), (b) after etched by KOH solution (LED-B), (c-g) after etched by KrF laser with 0, 60, 90, 120, 150 and 180 pulses at energy density 800 mJ/cm2, and (h-l) after etched by KrF laser with different pulses, and KOH solution (LED-C) 69 Fig. 5-3 The SEM images of the u-GaN surface of TFFC-LEDs with 120 pulses of laser irradiation and EDS profiles 70 Fig. 5-4 Schematic devices and calculation results obtained from ray-tracing simulations showing effectiveness of surface texturing scheme 72 Fig. 5-5 Comparison of EL spectra of fabricated TFFC-LEDs. 74 Fig. 5-6 (a) The measured near-field emission intensity images and (b) the distribution of light intensity along the path a-b of the fabricated TFFC-LEDs at 50 mA 74 Fig. 5-7 Comparison of I-V characteristics of fabricated TFFC-LEDs. Inset shows the reverse I–V characteristics 75 Fig. 5-8 Comparison of LOP-I characteristics of fabricated TFFC-LEDs. 75 Fig. 5-9 Comparison of WPE-I characteristics of fabricated TFFC-LEDs 75 Fig. 6-1 (a) VLED-B with a ladder-shaped n-GaN and a dendritic-shaped n-electrode, (b) VLED-C with a two-step etching right under the patterned electrodes and a fence- fence-shaped n-electrode, and (c) VLED with a dendritic-shaped n-electrode and a ladder morphology of n-GaN right under patterned n-electrode 82 Fig6-2 Using textured phosphor layers through nanoimprint lithography to improve the LEE and color rendering index of white LEDs 83

    [1.1] H. P. Maruska and J. J. Tietjen, ‘‘The Preparation and Properties of Vapor-Deposited Single-Crystal-Line GaN’’, Appl. Phys. Lett., vol. 15, p. 327, 1969.
    [1.2] S. Nakamura, and M. R. Krames, “History of Gallium–Nitride-Based Light-Emitting Diodes for Illumination”, Proc. IEEE, vol. 101, p. 2211, 2013.
    [1.3] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic Vapor Phase Epitaxial Growth of a High Quality GaN Film Using an AlN Buffer Layer”, Appl. Phys. Lett., vol. 48, p. 353, 1986.
    [1.4] S. Nakamura, ‘‘GaN Growth Using GaN Buffer Layer”, Jpn. J. Appl. Phys., vol. 30, p. L1705, 1991.
    [1.5] S. Nakamura, T. Mukai, and M. Senoh, ‘‘Insitu Monitoring and Hall Measurements of GaN with GaN Buffer Layers’’, J. Appl. Phys., vol. 71, p. 5543, 1992.
    [1.6] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “p-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI)”, Jpn. J. Appl. Phys., vol. 28, p. L2112, 1989.
    [1.7] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal Annealing Effects on p-Type Mg-Doped GaN Films”, Jpn. J. Appl. Phys., vol. 31, p. L139, 1992.
    [1.8] S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, “Hole Compensation Mechanism of p-Type GaN Films”, Jpn. J. Appl. Phys., vol. 31, p. 1258, 1992.
    [1.9] J. Neugenbauer and C. G. Van de Walle, ‘‘Hydrogen in GaN: Novel Aspects of a Common Impurity,’’ Phys. Rev. Lett., vol. 75, p. 4452, 1995.
    [1.10] J. Neugenbauer and C. G. Van de Walle, ‘‘Role of Hydrogen in Doping of GaN,’’ Appl. Phys. Lett., vol. 68, p. 1829, 1996.
    [1.11] K. Osamura, K. Nakajima, and Y. Murakami, “Fundamental Absorption Edge in GaN, InN and Their Alloys,’’ Solid State Commun., vol. 11, p. 617, 1972.
    [1.12] K. Osamura, S. Naka, and Y. Murakami, “Preparation and Optical Properties of Ga(1-x)InxN Thin Films,’’ J. Appl. Phys., vol. 46, p. 3432, 1975.
    [1.13] T. Nagatomo, T. Kuboyama, H. Minamino, and O. Omoto, ‘‘Properties of Ga(1-x)InxN Films Prepared by MOVPE,’’ Jpn. J. Appl. Phys., vol. 28, p. L1334, 1989.
    [1.14] N. Yoshimoto, T. Matsuoka, T. Sasaki, and A. Katsui, ‘‘Photolumiesence of InGaN Films Grown at High Temperature by MOVPE,’’ Appl. Phys. Lett., vol. 59, p. 2251, 1991.
    [1.15] S. Nakamura and T. Mukai, ‘‘High-Quality InGaN Films Grown on GaN Films,’’ Jpn. J. Appl. Phys., vol. 31, p. L1457, 1992.
    [1.16] S. Nakamura, T. Mukai, and M. Senoh, “High-Power GaN p-n Junction Blue-Light-Emitting Diodes,’’ Jpn. J. Appl. Phys., vol. 30, p. L1998, 1991.
    [1.17] H. P. Maruska, D. A. Stevenson, and J. I. Pankove, ‘‘Violet Luminescence of Mg-Doped GaN,’’ Appl. Phys. Lett., vol. 22, p. 303, 1973.
    [1.18] M. Ilegems and R. Dingle, ‘‘Luminescence of Be- and Mg-Doped GaN,’’ J. Appl. Phys., vol. 44, p. 4234, 1973.
    [1.19] Nikkan Kogyo Shinbun, MIS type blue LEDs with a brightness of 200 mcd were developed by Toyoda Gosei, Japanese newspaper press release, Oct. 20, 1993.
    [1.20] J. I. Pankove, E. A. Miller, D. Richman, and J. E. Berkeyheiser, ‘‘Electroluminescence in GaN,’’ J. Luminescence, vol. 4, p. 63, 1971.
    [1.21] S. Nakamura, M. Senoh, and T. Mukai, ‘‘p-GaN/n-InGaN/n-GaN Double-Heterostructure Blue-Light-Emitting Diodes,’’ Jpn. J. Appl. Phys., vol. 32, p. L8, 1993.
    [1.22] Nikkei Sangyo Shinbun, ‘‘p-n Junction DH Blue LEDs with a Brightness of More than 1000 mcd were Developed by Nichia Chemical Industries Ltd.,’’ Japanese newspaper press release, Nov. 30, 1993.
    [1.23] “The Challenges For Going Green”, Compound Semiconductor, London, UK, June 2012, from http://www.compoundsemiconductor.net/article/89562-the-challenges-for-going-green.html
    [1.24] S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, ‘‘High-Brightness InGaN Blue, Green and Yellow Light-Emitting Diodes with Quantum Well Structures,’’ Jpn. J. Appl. Phys., vol. 34, p. L797, 1995.
    [1.25] Q. Zhou, M. Xu, and H. Wang, “Internal Quantum Efficiency Improvement of InGaN/GaN Multiple Quantum Well Green Light-Emitting Diodes”, Opto−Electron. Rev., vol. 24, p. 1, 2016.
    [1.26] S. Nakamura and G. Fasol, The Blue Laser Diode. Berlin, Germany: Springer-Verlag, p. 216, 1997.
    [1.27] “Solid-State Lighting R&D Plan”, U. S. department of energy, Washington, DC, May 2015, from http://www.energy.gov/sites/prod/files/2015/02/f19/chu_global-trends_sanfrancisco2015.pdf
    [1.28] “The Basics of LED Technology”, ANTARES Group, Inc., Fayetteville, NY, December 2015, from http://antaresgroupinc.com/the-basics-of-led-technology/
    [1.29] Y. Kim, W. Go¨tz, D. A. Steigerwald, J. J. Wierer, N. F. Gardner, J. Sun, S. A. Stockman, P. S. Martin, M. R. Krames, R. S. Kern, and F. M. Steranka, “Performance of High-Power AlInGaN Light Emitting Diodes”, phys. stat. sol. (a), p. 188, p. 15, 2001.
    [1.30] M. Kneissl, and Jens Rass, “III-Nitride Ultraviolet Emitters”, Institude of Solid State Physics Technische Universität Berlin Germany.
    [1.31] M. R. Krames, O. B. Shchekin, R. M. Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting”, J. Display Technol., vol. 3, p. 160, 2007.
    [1.32] C. J. Humphreys, “Solid-State Lighting”, MRS Bulletin, vol. 33, p. 459, 2008.
    [1.33] S. Yoshida, S. Misawa, and S. Gonda, “Improvements on the Electrical and Luminescent Properties of Reactive Molecular Beam Epitaxially Grown GaN Films by Using AlN-Coated Sapphire Substrates”, Appl. Phys. Lett., vol. 42, p. 427, 1983.
    [1.34] H. Amano, N. Sawaki, I. Akasaki, and Y. Touoda, ”Metalorganic Vapor Phase Epitaxial Growth of a High Quality GaN Film Using an AlN Buffer Layer”, Appl. Phys. Lett., vol. 48, p. 353, 1986.
    [1.35] H. Amano, M. Iwaya, T. Kashima, M. Katsuragawa, I. Akasaki, J. Han, S. Hearne, J.A. Floro, E. Chason, and J. Figiel, ”Stress and Defect Control in GaN Using Low Temperature Interlayers”, Jpn. J. Appl. Phys., vol. 37, p. L1540, 1998.
    [1.36] B. Beaumont, Ph. Vennegures, and P. Gibart, “Epitaxial Lateral Overgrowth of GaN”, Phys. Stat. Sol. (b), vol. 227, p. 1, 2001.
    [1.37] R. F. Davis, T. Gehrke, K. J. Linthicum, P. Rajagopal, A. M. Roskowski, T. Zheleva, E. A. Preble, C. A. Zorman, M. Mehregany, U. Schwarz, J. Schuck, and R. Grober, ”Review of Pendeo-Epitaxial Growth and Characterization of Thin Films of GaN and AlGaN Alloys on 6H-SiC(0001) and Si(111) Substrates”, MRS Internet Journal of Nitride Semiconductor Research, vol. 6, p. 1, 2001.
    [1.38] C. I. H. Ashby, C. C. Mitchell, J. Han, N. A. Missert, P. P. Provencio, D. M. Follstaedt, G. M. Peake, and L. Griego, “Low-Dislocation-Density GaN from a Single Growth on a Textured Substrate”, Appl. Phys. Lett., vol. 77, p. 3233, 2000.“Solid-State Lighting R&D Plan”, U. S. department of energy, Washington, DC, May 2015.
    [1.39] E. F. Schubert, “Light-Emitting Diodes”, Cambridge University, 2003.
    [1.40] J. H. Son, J. U. Kin, Y. H. Song, B. J. Kim, C. J. Ryu, and J. L. Lee, “Design Rule of Nanostructures in Light-Emitting Diodes for Complete Elimination of Total Internal Reflection”, Adv. Mater., vol. 24, p. 2259, 2012.
    [1.41] W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romano, and N. M. Johnson, “InxGa1-xN Light Emitting Diodes on Si Substrates Fabricated by Pd–In Metal Bonding and Laser Lift-Off”, Appl. Phys. Lett., vol. 77, p. 2822, 2000.
    [1.42] E. F. Schubert, “Light-Emitting Diodes”, Cambridge University, 2003.
    [1.43] S. Nakamura, S. Pearton, and G. Fasol, “The Blue Laser Diode (Springer, Berlin, 2000) 2nd ed.”, p.100.
    [1.44] W. S. Wong, T. Sands, , N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romano, and N. M. Johnson, “Fabrication of Thin-Film InGaN Light-Emitting Diode Membranes by Laser Lift-Off”, Appl. Phys. Lett., vol. 75, p. 1360, 1999.
    [1.45] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the Extraction Efficiency of GaN-based Light-Emitting Diodes via Surface Roughening”, Appl. Phys. Lett., vol. 84, p. 855, 2004.
    [1.46] T. Fujii, A. David, Y. Gao, M. Iza, S. P. DenBaars, E. L. Hu, C. Weisbuch, and S. Nakamura, “Cone‐Shaped Surface GaN‐Based Light‐Emitting Diodes”, Phys. Stat. Sol. C, vol. 2, p. 2836, 2005.
    [1.47] O. B. Shchekin, J. E. Epler, T. A. Trottier, T. Margalith, D. A. Steigerwald, M. O. Holcomb, P. S. Martin and M. R. Krames, “High Performance Thin-Film Flip-Chip InGaN–GaN Light-Emitting Diodes”, Appl. Phys. Lett., vol.89, p. 071109, 2006.
    [1.48] S. L. Chen, S. J. Wang, K. M. Uang, T. M. Chen, W. C. Lee, and B. W. Liu, “Fabrication of Dicing-Free Vertical-Structured High-Power GaN-Based Light-Emitting Diodes With Selective Nickel Electroplating and Patterned Laser Liftoff Techniques”, IEEE Photonics Technol. Lett., vol. 19, p. 351, 2007.
    [1.49] W. Y. Lin, D. S. Wuu, K. F. Pan, S. H. Hung, C. E. Lee, W. K. Wang, S. C. Hsu, Y. Y. Su, S. Y. Huang, and R. H. Horng, “High-Power GaN-Mirror-Cu Light-Emitting Diodes for Vertical Current Injection Using Laser Liftoff and Electroplating Techniques”, IEEE Photonics Technol. Lett., vol. 17, p 1809, 2007.
    [1.50] H. C. Lee, J. B. Park, J. W. Bae, P. T. T. Thuy, M. C. Yoo, and G. Y. Yeom, “Effect of the Surface Texturing Shapes Fabricated Using Dry Etching on the Extraction Efficiency of Vertical Light-Emitting Diodes”, Solid-State Electron., vol. 52, p. 1193, 2008.
    [1.51] C. E. Lee, Y. C. Lee, H. C. Kuo, T. C. Lu, and S. C. Wang, “Further Enhancement of Nitride-Based Near-Ultraviolet Vertical-Injection Light-Emitting Diodes by Adopting a Roughened Mesh-Surface”, IEEE Photon. Technol. Lett., vol. 20, p. 803, 2008.
    [1.52] H. K. Cho, S. K. Kim, D. K. Bae, B. C. Kang, J. S. Lee, and Y. H. Lee, “Laser Liftoff GaN Thin-Film Photonic Crystal GaN-Based Light-Emitting Diodes”, IEEE Photon. Technol. Lett., vol. 20, p. 2096, 2008.
    [1.53] H. Y. Kuo, S. J. Wang, P. R. Wang, K. M. Uang, T. M. Chen, and H. Kuan, “A Sn-Based Metal Substrate Technology for the Fabrication of Vertical-Structured GaN-Based Light-Emitting Diodes”, Appl. Phys. Lett., vol. 92, p. 021105, 2008.
    [1.54] R. H. Horng, H. L. Hu, M. T. Chu, Y. L. Tsai, Y. J. Tsai, C. P. Hsu, and D. S. Wuu, “Performance of Flip-Chip Thin-Film GaN Light-Emitting Diodes With and Without Patterned Sapphires”, IEEE Photon. Technol. Lett., vol. 22, p. 550, 2010.
    [1.55] S. J. Wang, K. M. Uang, S. L. Chen,Y. C. Yang, S. C. Chang, T. M. Chen, and C. H. Chen, “Use of Patterned Laser Liftoff Process and Electroplating Nickel Layer for the Fabrication of Vertical-Structured GaN-Based Light-Emitting Diodes”, Appl. Phys. Lett., vol. 87, p. 011111, 2005.
    [1.56] R. H. Horng, C. C. Yang, J. Y. Wu, S. H. Huang, C. E. Lee, and D. S. Wuu, “GaN-Based Light-Emitting Diodes with Indium Tin Oxide Texturing Window Layers Using Natural Lithography”, Appl. Phys. Lett., vol. 86, p. 221101-1, 2005.
    [1.57] W. S. Wong, T. Sands, and N. W. Cheung, “Damage-Free Separation of GaN Thin Films from Sapphire Substrates”, Appl. Phys. Lett., vol. 72, p. 599, 1998.
    [1.58] M. K. Kelly, O. Ambacher, B. Dahlheimer, G. Groos, R. Dimitrov, H. Angerer, and M. Stutzmann, “Optical Patterning of GaN Films”, Appl. Phys. Lett., vol. 69, p. 1749, 1996.
    [1.59] C. R. Miskys, M. K. Kelly, O. Ambacher, and M. Stutzmann, “Freestanding GaN-Substrates and Devices”, Phys. Stat. Sol. (c), vol. 0, p. 1627, 2003.
    [1.60] T. Fujii, A. David, Y. Gao, M. Iza, S. P. DenBaars, E. L. Hu, C. Weisbuch, and S. Nakamura, ”Cone-Shaped Surface GaN-Based Light-Emitting Diodes”, Phys. Stat. Sol. C, vol. 2, p. 2836, 2005.
    [1.61] K. M. Uang, S. J. Wang, S. L. Chen, Y. C. Yang, T. M. Chen and B. W. Liou, “Effect of Surface Treatment on the Performance of Vertical-Structure GaN-Based High-Power Light-Emitting Diodes with Electroplated Metallic Substrates”, Jpn. J. Appl. Phys., vol. 45, p. 3436, 2006.
    [1.62] C. E. Lee, Y. C. Lee, H. C. Kuo, T. C. Lu, and S. C. Wang, “Further Enhancement of Nitride-Based Near-Ultraviolet Vertical-Injection Light-Emitting Diodes by Adopting a Roughened Mesh-Surface”, IEEE Photon. Technol. Lett., vol. 20, p. 803, 2008.
    [1.63] R. H. Horng, H. L. Hu, M. T. Chu, Y. L. Tsai, Y. J. Tsai, C. P. Hsu, and D. S. Wuu, “Performance of Flip-Chip Thin-Film GaN Light-Emitting Diodes With and Without Patterned Sapphires”, IEEE Photon. Technol. Lett., vol. 22, p. 550, 2010.
    [1.64] Y. H. Chang, C. T. Yang, and C. Y. Liu, “Light Extraction Improvement by Forming Volcanic Crater on N-polar GaN Emitting Surface”, Phys. Status Solidi A, vol. 209, p. 998, 2012.
    [1.65] S. L. Qi, Z. Z. Chen, H. Fang, Y. J. Sun, L. W. Sang, X. L. Yang, L. B. Zhao, P. F. Tian, J. J. Deng, and Y. B. Tao, T. J. Yu, Z. X. Qin, and G. Y. Zhang, “Study on the Formation of Dodecagonal Pyramid on Nitrogen Polar GaN Surface Etched by Hot H3PO4”, Appl. Phys. Lett., vol. 95, p. 071114, 2009.
    [1.66] F. Yu, Z. Chen, S. Qi, S. Wang, S. Jiang, X. Fu, X. Jiang, T. Yu, Z. Qin, X. Kang, J. Wu and G. Zhang, “Changing Oblique Angles of Pyramid Facets Fabricated by Wet Etching of N Polar GaN”, CrystEngComm, vol. 14, p. 4781, 2012.
    [1.67] H. C. Lee, J. B. Park, J. W. Bae, P. T. T. Thuy, M. C. Yoo, and G. Y. Yeom, ”Effect of the Surface Texturing Shapes Fabricated Using Dry Etching on the Extraction Efficiency of Vertical Light-Emitting Diodes”, Solid-State Electronics, vol. 52, p. 1193, 2008.
    [1.68] K. H. Li, Y. F. Cheung, Q. Zhang, and H. W. Choi, “Optical and Thermal Analyses of Thin-Film Hexagonal Micro-Mesh Light-Emitting Diodes”, IEEE Photo. Tech. Lett., vol. 25, p. 374, 2013.
    [1.69] Y. C. Tu, S. J. Wang, G. Y. Lin, T. H. Lin, C. H. Hung, F. S. Tsai, K. M. Uang, and T. M. Chen, “Enhanced Light Output of Vertical GaN-based LEDs with Surface Roughened by Refractive-index-matched Si3N4/GaN Nanowire Arrays”, Appl. Phys. Express, vol. 7, p. 042101, 2014.
    [1.70] Y. H. Yeh, J. K. Sheu, M. L. Lee, W. Y. Yen, L. C. Peng, C. Y. Yeh, P. H. Liao, P. C. Chen, and W. C. Lai, “Vertical GaN-Based LEDs With Naturally Textured Surface Formed by Patterned Sapphire Substrate With Self-Assembled Ag Nanodots as Etching Mask”, IEEE Trans. Electron Devices, vol. 62, p. 2919, 2015.
    [2.1] S. Zhou, S. Liu and H. Ding, “Enhancement in Light Extraction of LEDs with SiO2 Current Blocking Layer Deposited on Naturally Textured p-GaN Surface”, Optics & Laser Technology, vol. 47, p. 127, 2013.
    [2.2] L. Wang, Y. Zhang, X. Li, Z. Liu, L. Zhang, E. Guo, X. Yi, H. Zhu and G. Wang, “InGaN-Based Vertical Light-Emitting Diodes with Acid-Modified Graphene Transparent Conductor and Highly Reflective Membrane Current Blocking Layer”, Proc. R. Soc. A, vol. 469, p. 20120652, 2013.
    [2.3] C. F. Lin, W. C. Lee, B. C. Shieh, D. Chen, D. Wang, and J. Han, “Fabrication of Current Confinement Aperture Structure by Transforming a Conductive GaN:Si Epitaxial Layer into an Insulating GaOx Layer”, ACS Appl. Mater. Interfaces, vol. 6, p. 22235, 2014.
    [2.4] M. Oh and H. Kim, “Vertical-Injection GaN-Based Light-Emitting Diodes Fabricated With Schottky-Contact Current Blocking Layer”, IEEE Trans. Electron Devices, vol. 61, p. 2427, 2014.
    [2.5] K. H. Lee, Y. T. Moon, S. K. Oh, and J. S. Kwak, “High Efficiency and ESD of GaN-Based LEDs With Patterned Ion-Damaged Current Blocking Layer”, IEEE Photon. Technol. Lett., vol. 27: p. 149, 2015.
    [2.6] M. A. Tsai, P. Yu, J. R. Chen, J. K. Huang, C. H. Chiu, H. C. Kuo,T. C. Lu, S. H. Lin, and S. C. Wang, “Improving Light Output Power of the GaN-Based Vertical-Injection Light-Emitting Diodes by Mg+ Implanted Current Blocking Layer”, IEEE Photon. Technol. Lett., vol. 21, no. 11, p. 688, 2009.
    [2.7] S. H. Tu, J. C. Chen, F. S. Hwu, G. J. Sheu, F. L. Lin, S. Y. Kuo, J. Y. Chang and C. C. Lee, “Characteristics of Current Distribution by Designed Electrode Patterns for High Power ThinGaN LED”, Solid-State Electron., vol. 54, p. 1438, 2010.
    [2.8] S. H. Kim, T. H. Kim, J. W. Bae and G. Y. Yeom, “Thermal stability of AgXCu1−X Alloys and Pt Capping Layers for GaN Vertical Light Emitting Diodes”, Thin Solid Films, vol. 521, p. 54, 2012.
    [2.9] H. Y. Ryu, I. G. Choi, H. S. Choi and J. I. Shim, “Investigation of Light Extraction Efficiency in AlGaN Deep-Ultraviolet Light-Emitting Diodes”, Appl. Phys. Express, vol. 6, p. 062101, 2013.
    [2.10] T. K. Kim, S. H. Kim, S. S. Yang, J. K. Son, K. H. Lee, Y. G. Hong , K. H. Shim, J. W. Yang, K. Y. Lim, S. J. Bae, and G. M. Yang, “GaN-Based Light-Emitting Diode with Textured Indium Tin Oxide Transparent Layer Coated with Al2O3 Powder”, Appl. Phys. Lett., vol. 94, p. 161107, 2009
    [2.11] X. Kun, X. Chen, D. Jun, Z. Yanxu, G. Weiling, M. Mingming, Z. Lei, and S. Jie, “Graphene Transparent Electrodes Grown by Rapid Chemical Vapor Deposition with Ultrathin Indium Tin Oxide Contact Layers for GaN Light Emitting Diodes”, Appl. Phys. Lett., vol. 102, p. 162102, 2013.
    [2.12] S. Huang, B. Fan, Z. Chen, Z. Zheng, H. Luo, Z. Wu, G. Wang, and H. Jiang, “Lateral Current Spreading Effect on the Efficiency Droop in GaN Based Light-Emitting Diodes”, J. Disp. Technol., vol. 9, p. 266, 2013.
    [2.13] J. K. Liou, C. C. Chen, P. C. Chou, T. Y. Tsai, S. Y. Cheng, and W. C. Liu, “Improved Current Spreading Performance of a GaN-Based Light-Emitting Diode with a Stair-Like ITO Layer”, Solid-State Electronics, vol. 99, p. 21, 2014.
    [2.14] S. Krishnamoorthy, F. Akyol, and S. Rajan, “InGaN/GaN Tunnel Junctions for Hole Injection in GaN Light Emitting Diodes”, Appl. Phys. Lett., vol. 105, p. 141104, 2014.
    [2.15] S. Chandramohan, K. B. Ko, J. H. Yang, B. D. Ryu, Y. S. Katharria, T. Y. Kim, B. J. Cho, and C. H. Hong, “Performance Evaluation of GaN Light-Emitting Diodes Using Transferred Graphene as Current Spreading Layer”, J. Appl. Phys., vol. 115, p. 054503, 2014.
    [2.16] Crosslight APSYS. Crosslight Software. Burnaby, Canada; 2013.
    [2.17] W. A. Hendricks, and K. W. Robey, “The Sampling Distribution of the Coefficient of Variation”, Ann. Math. Statist. vol.7, p. 129, 1936.
    [3.1] S. H. Tu, J. C. Chen, F. S. Hwu, G. J. Sheu, F. L. Lin, S. Y. Kuo, J. Y. Chang, and C. C. Lee, “Characteristics of Current Distribution by Designed Electrode Patterns for High Power ThinGaN LED”, Solid-State Electronics, vol. 54, p. 1438, 2010.
    [3.2] S. H. Kim, T.H. Kim, J.W. Bae, and G.Y. Yeom, “Thermal stability of AgXCu1 − X alloys and Pt capping layers for GaN vertical light emitting diodes”, Thin Solid Films, vol. 521, p. 54, 2012.
    [3.3] C. K. Li, and Y. R. Wu, “Study on the Current Spreading Effect and Light Extraction Enhancement of Vertical GaN/InGaN LEDs”, IEEE Trans. Electron Devices, vol. 59, p. 400, 2012.
    [3.4] D. M. Kuo, S. J. Wang, K. M. Uang, T. M. Chen, H. Y. Kuo, W. C. Lee , and P. R. Wang, “Enhanced Performance of Vertical GaN-Based LEDs with Highly Reflective p-Ohmic Contact and Periodic Indium-Zinc-Oxide Nano-Wells”, IEEE Photon. Technol. Lett., vol. 22: p. 338, 2010.
    [3.5] S.J. Wang, K. M. Uang, S. L. Chen, Y. C. Yang, S. C. Chang, T. M. Chen, C. H. Chen, and B. W. Liou, “Use of Patterned Laser Liftoff Process and Electroplating Nickel Layer for the Fabrication of Vertical-Structured GaN-Based Light-Emitting Diodes”, Appl. Phys. Lett., vol. 87, p. 011111, 2005.
    [3.6] J. K. Liou, C. C. Chen, P. C. Chou, T. Y. Tsai, S. Y. Cheng, and W. C. Liu, “Improved Current Spreading Performance of a GaN-based Light-emitting Diode with a Stair-like ITO Layer”, Solid-State Electron, vol. 99, p. 21, 2014.
    [3.7] X. Kun, X. Chen, D. Jun, Z. Yanxu, G. Weiling, M. Mingming, Z. Lei, and S. Jie, “Graphene Transparent Electrodes Grown by Rapid Chemical Vapor Deposition with Ultrathin Indium Tin Oxide Contact Layers for GaN Light Emitting Diodes”, Appl. Phys. Lett., vol. 102, p. 162102, 2013.
    [3.8] W. Gu, T. Xu, and J. Zhang, “Improved Ohmic Contact of Ga-Doped ZnO to p-GaN by Using Copper Sulfide Intermediate Layers”, Solid-State Electron, vol. 89, p. 76, 2013.
    [3.9] H. Kim, K. K. Kim, and S. N. Lee, “Enhanced Light Extraction in GaN-Based Light Emitting Diodes Fabricated with Increased Mesa Sidewalls”, J. Electrochem. Soc., vol. 157, p. H170, 2010.
    [3.10] H. Kim, and K. S. Ahn, “Enhanced Light Extraction of GaN-Based Light Emitting Diodes Fabricated with Deeply Etched Mesa Holes”, Electrochem. Solid State Lett., vol. 13, p. H131, 2010.
    [3.11] Z. Gong, Y. F. Zhang, P. Kelm, I. M. Watson, E. Gu, and M. D. Dawson, “InGaN Micro-pixellated Light-emitting Diodes with Nano-textured Surfaces and Modified Emission Profiles”, Appl. Phys. A, vol. 103, p. 389, 2011.
    [3.12] K. H. Li, Y. F. Cheung, Q. Zhang, and H. W. Choi, “Optical and Thermal Analyses of Thin-Film Hexagonal Micro-Mesh Light-Emitting Diodes”, IEEE Photon. Technol. Lett., vol. 25, p. 374, 2013.
    [3.13] N. Lobo Ploch, H. Rodriguez, C. Stolmacker, M. Hoppe, M. Lapeyrade, J. Stellmach, F. Mehnke, Tim Wernicke, A. Knauer, V. Kueller, M. Weyers, S. Einfeldt, and M. Kneissl, “Effective Thermal Management in Ultraviolet Light-Emitting Diodes With Micro-LED Arrays”, IEEE Trans. Electron Devices, vol. 60, p. 782, 2013.
    [3.14] TracePro. TracePro Software. Littleton, USA; 2011.
    [3.15] Crosslight APSYS. Crosslight Software. Burnaby, Canada; 2013.
    [3.16] W. A. Hendricks, and K. W. Robey, “The Sampling Distribution of the Coefficient of Variation”, Ann. Math. Statist. vol.7, p. 129, 1936.
    [3.17] X. Guo, Y. L. Li, and E. F. Schubert, “Efficiency of GaN/InGaN Light-emitting Diodes with Interdigitated Mesa Geometry”, Appl. Phys. Lett., vol. 79, p. 1936, 2001.
    [4.1] E. F. Schubert, Light-Emitting Diode, 2nd ed. Cambridge, U.K.: Cambridge Univ. Press, p. 150, 2006.
    [4.2] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright Green InGaN Single-Quantum-Well-Structure Light-Emitting Diodes”, Jpn. J. Appl. Phys., vol. 34, p. L1332, 1995.
    [4.3] M. Akanegawa, Y. Tanaka, and M. Nakagawa, “Basic Study on Traffic Information System Using LED Traffic Lights”, IEEE Trans. Intell. Transp., vol. 2, p. 197, 2001.
    [4.4] I. Akssaki, “Key Inventions in the History of Nitride-based Blue LED and LD”, J. Cryst. Growth, vol. 300, p. 2, 2007.
    [4.5] J. Wierer, A. David, and M. Megens, “III-nitride Photonic-Crystal Light-Emitting Diodes with High Extraction Effciency”, Nat. Photonics, vol. 3, p. 163, 2009.
    [4.6] H. Jia, L. Guo, W. Wang, and H. Chen, “Recent Progress in GaN-Based Light-Emitting Diodes”, Adv. Mater., vol. 21, p. 4641, 2009.
    [4.7] W. Y. Lin, D. S. Wuu, K. F. Pan, S. H. Huang, C. E. Lee, W. K. Wang, S. C. Hsu, Y. Y. Su, S. Y. Huang, and R. H. Horng, “High-Power GaN–Mirror–Cu Light-Emitting Diodes for Vertical Current Injection Using Laser Liftoff and Electroplating Techniques”, IEEE Photo. Tech. Lett., vol. 17, p. 1809, 2005.
    [4.8] S. J. Wang, K. M. Uang, S. L. Chen, Y. C. Yang, S. C. Chang, T. M. Chen, C. H. Chen, and B. W. Liou, “Use of Patterned Laser Lift Off Process and Electroplating Nickel Layer for the Fabrication of Vertical-Structured GaN-Based Light-Emitting Diodes”, Appl. Phys. Lett., vol. 87, p. 011111, 2005.
    [4.9] K. M. Uang, S. J. Wang, S. L. Chen, Y. C. Yang, T. M. Chen and B. W. Liou, “Effect of Surface Treatment on the Performance of Vertical-Structure GaN-Based High-Power Light-Emitting Diodes with Electroplated Metallic Substrates”, Jpn. J. Appl. Phys., vol. 45, p. 3436, 2006.
    [4.10] S. L. Chen, S. J. Wang, K. M. Uang, T. M. Chen, W. C. Lee, and B. W. Liou, “Fabrication of Dicing-Free Vertical-Structured High Power GaN-Based Light-Emitting Diodes with Selective Nickel Electroplating and Patterned Laser Lift off Techniques”, IEEE Photo. Tech. Lett., vol. 19, p. 351, 2007.
    [4.11] H. Kim, K. K. Kim, and S. N. Lee, “Enhanced Light Extraction in GaN-Based Light Emitting Diodes Fabricated with Increased Mesa Sidewalls”, J. Electrochem. Soc., vol. 157, p. H170, 2010.
    [4.12] H. Kim, and K. S. Ahn, “Enhanced Light Extraction of GaN-Based Light Emitting Diodes Fabricated with Deeply Etched Mesa Holes”, Electrochem. Solid-State Lett., vol. 13, p. H131, 2010.
    [4.13] Z. Gong, Y. F. Zhang, P. Kelm, I. M. Watson, E. Gu, and M. D. Dawson, “InGaN micro-pixellated light-emitting diodes with nano-textured surfaces and modified emission profiles”, Appl. Phys. A, vol. 103, p. 389, 2011.
    [4.14] K. H. Li, Y. F. Cheung, Q. Zhang, and H. W. Choi, “Optical and Thermal Analyses of Thin-Film Hexagonal Micro-Mesh Light-Emitting Diodes”, IEEE Photo. Tech. Lett., vol. 25, p. 374, 2013.
    [4.15] S. Y. Jung, J. Choe, M. S. Seok, Q. H. Park, and T. Y. Seong, “Improving the Light Output Power of GaN-based Light-Emitting Diodes through the use of SiO2 Cones”, Mater. Sci. Semicond. Process., vol. 16, p. 582, 2013.
    [4.16] T. H. Lin, S. J. Wang, Y. C. Tu, C. H. Hung, C. A. Lin, Y. C. Lin, and Z. S. You, “Enhanced Light Emission in Vertical-Structured GaN-Based Light-Emitting Diodes with Trench Etching and Arrayed p-Electrodes”, Solid-State Electron., vol. 107, p. 30, 2015.
    [4.17] T. H. Lin, S. J. Wang, Y. C. Tu, C. H. Hung, and T. H. Yu, “Improving the Performance of Power GaN-based Thin-Film Flip-Chip LEDs through a Twofold Roughened Surface”, Mater. Sci. Semicond. Process., vol. 45, p. 69, 2016.
    [4.18] K. J. Byeon, J. Y. Cho, J. Kim, H. Park, and H. Lee, “Fabrication of SiNx-Based Photonic Crystals on GaN-based LED Devices with Patterned Sapphire Substrate by Nanoimprint Lithography”, Opt. Express, vol. 20, p. 11423, 2012.
    [4.19] T. Y. Sun, W. N. Zhao, X. H. Wu, S. S. Liu, Z. C. Ma, J. Peng, J. He, H. F. Xu, S. Y. Liu, and Z. M. Xu, “Porous Light-Emitting Diodes With Patterned Sapphire Substrates Realized by High-Voltage Self-Growth and Soft UV Nanoimprint Processes”, J. Lightwave Technol., vol. 32, p. 326, 2014.
    [4.20] J. K. Huang, C. Y. Liu, T. P. Chen, H. W. Huang, F. I. Lai, P. T. Lee, C. H. Lin, C. Y. Chang, T. S. Kao, and H. C. Kuo, “Enhanced Light Extraction Efficiency of GaN-Based Hybrid Nanorods Light-Emitting Diodes”, IEEE J. Sel. Top. Quant. Electron., vol. 21, p. 6000107, 2015.
    [4.21] K. J. Byeon, J. Y. Cho, H. B. Jo, and H. Lee, “Fabrication of High-Brightness GaN-Based Light-Emitting Diodes via Thermal Nanoimprinting of ZnO-Nanoparticle-Dispersed Resin”, Appl. Surf. Sci., vol. 346, p. 354, 2015.
    [4.22] P. Uthirakumar, J. H. Kang, B. D. Ryu, and C. H. Hong, “Improved Light Extraction Efficiency of GaN-Based Light Emitting Diodes Using One and Two Interfaces of ITO/ZnO Layer Texturing”, Mater. Sci. Semicond. Process., vol. 13, p. 329, 2010.
    [4.23] S. H. Kim, H. H. Park, Y. H. Song, H. J. Park, J. B. Kim, S. R. Jeon, H. Jeong, M. S. Jeong, and G. M. Yang, “An Improvement of Light Extraction Efficiency for GaN-Based Light Emitting Diodes by Selective Etched Nanorods in Periodic Microholes”, Opt. Express, vol. 21, p. 7125, 2013.
    [4.24] J. K. Sheu, Y. H. Yeh, S. J. Tu, M. L. Lee, P. C. Chen, and W. C. Lai, “Improved Output Power of GaN-based Blue LEDs by Forming Air Voids on Ar-Implanted Sapphire Substrate”, IEEE J. Lightwave Technol., vol. 31, p. 1319, 2013.
    [4.25] S. J. Kim, K. H. Kim, H. Y. Chung, H. W. Shin, B. R. Lee, T. Jeong, H. J. Park, and T. G. Kim, “Light-Output Enhancement of GaN-based Vertical Light-Emitting Diodes Using Periodic and Conical Nanopillar Structures”, Opt. Lett., vol. 39, p. 3464, 2014.
    [4.26] J. K. Liou, W. C. Chen, C. H. Chang, Y. C. Chang, J. H. Tsai, and W. C. Liu, “Enhanced Light Extraction of a High-Power GaN-Based Light-Emitting Diode With a Nanohemispherical Hybrid Backside Reflector”, IEEE Trans. Electron Devices, vol. 62, no. 10, p. 3296, 2015.
    [4.27] Y. H. Yeh, J. K. Sheu, M. L. Lee, W. Y. Yen, L. C. Peng, C. Y. Yeh, P. H. Liao, P. C. Chen, and W. C. Lai, “Vertical GaN-Based LEDs With Naturally Textured Surface Formed by Patterned Sapphire Substrate With Self-Assembled Ag Nanodots as Etching Mask”, IEEE Trans. Electron. Devices, vol. 62, p. 2919, 2015.
    [4.28] Z. Yin, X. Liu, Y. Wu, X. Hao, and X. Xu, “Enhancement of Light Extraction in GaN-Based Light-Emitting Diodes Using Rough Beveled ZnO Nanocone Arrays”, Opt. Express, vol. 20, p. 1013, 2012.
    [4.29] Z. Yin, X. Liu, H. Yao, Y. Wu, X. Hao, M. Han, and X. Xu, “Light Extraction Enhancement of GaN LEDs by Hybrid ZnO Micro-Cylinders and Nanorods Array”, IEEE Photo. Tech. Lett., vol. 25, p. 1989, 2013.
    [4.30] Y. J. Wu, Y. S. Liu, C. Y. Hsieh, P. M. Lee, Y. S. Wei, Y. H. Chang, K. Y. Lai, and C. Y. Liu, “Light Extraction Enhancement of Vertical LED by Growing ZnO Nano-Rods on Tips of Pyramids”, IEEE Photo. Tech. Lett., vol. 25, p. 1774, 2013.
    [4.31] Y. C. Tu, S. J. Wang, J. C. Lin, F. S. Tsai, T. H. Lin, K. M. Uang, and T. M. Chen, “Light Output Improvement of GaN-Based Light-Emitting Diodes Using Hydrothermally Grown ZnO Nanotapers”, Jpn. J. Appl. Phys., vol. 52, p. 06GG13, 2013.
    [4.32] S. J. Chang, N. M. Lin, and S. C. Shei, “GaN-Based Power Flip-Chip LEDs With SILAR and Hydrothermal ZnO Nanorods”, IEEE J. Sel. Top. Quant. Electron., vol. 21, p. 9100405, 2015.
    [4.33] T. Son, D. S. Shin, K. Mageshwari, K. K. Kim, J. Park, “Improved Light Extraction Efficiency and Leakage Characteristics in Light-Emitting Diodes by Nanorod Arrays Formed on Hexagonal Pits”, Mater. Sci. Semicond. Process., vol. 29, p. 380, 2015.
    [4.34] TracePro Software, Littleton, USA; 2011.
    [5.1] O. B. Shchekin, J. E. Epler, T. A. Trottier, T. Margalith, D. A. Steigerwald, M. O. Holcomb, P. S. Martin, and M. R. Krames, “High performance thin-film flip-chip InGaN–GaN light-emitting diodes”, Appl. Phys. Lett., vol. 89, p. 071109, 2006.
    [5.2] C. E. Lee, Y. C. Lee, H. C. Kuo, T. C. Lu, and S. C. Wang, “Further Enhancement of Nitride-Based Near-Ultraviolet Vertical-Injection Light-Emitting Diodes by Adopting a Roughened Mesh-Surface”, IEEE Photonics Technol. Lett., vol. 20, p. 803, 2003.
    [5.3] R. H. Horng, H. L. Hu, M. T. Chu, Y. L. Tsai, Y. J. Tsai, C. P. Hsu, and D. S. Wuu, “Performance of Flip-Chip Thin-Film GaN Light-Emitting Diodes With and Without Patterned Sapphires”, IEEE Photonics Technol. Lett., vol. 22, p. 550, 2010.
    [5.4] Y. H. Chang, C. T. Yang, and C. Y. Liu, “Light Extraction Improvement by Forming Volcanic Crater on N-Polar GaN Emitting Surface”, Phys. Status Solidi A, vol. 209, p. 998, 2012.
    [5.5] B. Sun, L. Zhao, T. Wei, X. Yi, Z. Liu, G. Wang, J. Li, and F. Yi, “Light Extraction Enhancement of Bulk GaN Light-Emitting Diode with Hemisphere-Cones-Hybrid Surface”, Opt. Express, vol. 20, p. 18537, 2012.
    [5.6] S. Y. Jung, J. Choe, M. S. Seok, Q. H. Park, and T. Y. Seong, “Improving the Light Output Power of GaN-based Light-Emitting Diodes through the Use of SiO2 Cones”, Mater. Sci. Semicond. Process., vol. 16, p. 582, 2013.
    [5.7] S. H. Kim, H. H. Park, Y. H. Song, H. J. Park, J. B. Kim, S. R. Jeon, H. Jeong, M. S. Jeong, and G.M. Yang, “An Improvement of Light Extraction Efficiency for GaN-Based Light Emitting Diodes by Selective Etched Nanorods in Periodic Microholes”, Opt. Express, vol. 21, p. 7125, 2013.
    [5.8] S. J. Kim, K. H. Kim, H. Y. Chung, H. W. Shin, B. R. Lee, T. Jeong, H. J. Park, and T. G. Kim, “Light-Output Enhancement of GaN-Based Vertical Light-Emitting Diodes Using Periodic and Conical Nanopillar Structures”, Opt. Lett., vol. 39, p. 3464, 2014.
    [5.9] Z. G. Yu, L. X. Zhao, S. C. Zhu, X. C. Wei, X. J. Sun, L. Liu, J. X. Wang, and J. M. Li, “Optimization of the Nanopore Depth to Improve the Electroluminescence for GaN-based Nanoporous Green LEDs”, Mater. Sci. Semicond. Process., vol. 33, p. 76, 2015.
    [5.10] Y. H. Yeh, J. K. Sheu, M. L. Lee, W. Y. Yen, L. C. Peng, C. Y. Yeh, P. H. Liao, P. C. Chen, and W. C. Lai, “Vertical GaN-Based LEDs With Naturally Textured Surface Formed by Patterned Sapphire Substrate With Self-Assembled Ag Nanodots as Etching Mask”, IEEE Trans. Electron Devices, vol. 62, p. 2919, 2015.
    [5.11] T. Y. Sun, W. N. Zhao, X. H. Wu, S. S. Liu, Z. C. Ma, J. Peng, J. He, H. F. Xu, S. Y. Liu, and Z. M. Xu, “Porous Light-Emitting Diodes With Patterned Sapphire Substrates Realized by High-Voltage Self-Growth and Soft UV Nanoimprint Processes”, J. Lightwave Technol., vol. 32, p. 326, 2014.
    [5.12] C. Du, T. Wei, H. Zheng, L. Wang, C. Geng, Q. Yan, J. Wang, and J. Li, “Size-Controllable Nanopyramids Photonic Crystal Selectively Grown on p-GaN for Enhanced Light-Extraction of Light-Emitting Diodes”, Opt. Express, vol. 21, p. 25373, 2013.
    [5.13] Z. Yin, X. Liu, H. Yao, Y. Wu, X. Hao, M. Han, and X. Xu, “Light Extraction Enhancement of GaN LEDs by Hybrid ZnO Micro-Cylinders and Nanorods Array”, IEEE Photonics Technol. Lett., vol. 25, p. 1989, 2013.
    [5.14] S. J. Chang, N. M. Lin, and S. C. Shei, “GaN-Based Power Flip-Chip LEDs With SILAR and Hydrothermal ZnO Nanorods”, IEEE J. Sel. Top. Quantum Electron., vol. 21, p. 9100405, 2015.
    [5.15] J. K. Liou, P. C.Chou, C. C. Chen, Y. C. Chang, W. C. Hsu, S. Y. Cheng, J.H. Tsai, and W. C. Liu, “Implementation of High-Power GaN-Based LEDs With a Textured 3-D Backside Reflector Formed by Inserting a Self-Assembled SiO2 Nanosphere Monolayer”, IEEE Trans. Electron Devices, vol. 61, p. 831, 2014.
    [5.16] T. Akane, K. Sugioka, K. Hammura, Y. Aoyagi, K. Midorikawa, K. Obata, K. Toyoda, and S.Nomura, “GaN Ablation Etching by Simultaneous Irradiation with F2 Laser and KrF Excimer Laser”, J. Vac. Sci. Technol., vol. B19, p. 1388, 2001.
    [5.17] M. Iwaya, T. Takeuchi, S. Yamaguchi, C. Wetzel, H. Amano, and I. Akasaki, “Reduction of Etch Pit Density in Organometallic Vapor Phase Epitaxy-Grown GaN on Sapphire by Insertion of a Low-Temperature-Deposited Buffer Layer between High-Temperature-Grown GaN”, Jpn. J. Appl. Phys., vol. 37, p. L316, 1998.
    [5.18] X. J. Ning, F. R. Chien, P. Pirouz, J. W. Yang, and M. AsifKhan, “Growth Defects in GaN Films on Sapphire: The Probable Origin of Threading Dislocations”, J. Mater. Res., vol. 11, p. 580, 1996.
    [5.19] C. H. Ko, S. J. Chang, Y. K. Su, W. H. Lan, J. F. Chen, T. M. Kuan, Y. C. Huang, C. I. Chiang, J. Webb, and W. J. Lin, “On the Carrier Concentration and Hall Mobility in GaN Epilayers”, Jpn. J. Appl. Phys., vol. 41, p. L226, 2002.
    [5.20] D. S. Kuo, S. J. Chang, T. K. Ko, C. F. Shen, S. J. Hon, and S. C. Hunga, “Nitride-Based LEDs With Phosphoric Acid Etched Undercut Sidewalls”, IEEE Photonics Technol. Lett., vol. 21, p. 510, 2009.
    [5.21] H. W. Jang, J. K. Kim, J. L. Lee, J. Schroeder, and T. Sands, “Electrical Properties of Metal Contacts on Laser-Irradiated n-type GaN”, Appl. Phys. Lett., vol. 82, p. 580, 2003.
    [5.22] TraceProSoftware,Littleton,USA,2011.

    下載圖示 校內:2023-02-01公開
    校外:2023-02-01公開
    QR CODE