簡易檢索 / 詳目顯示

研究生: 張建文
Chang, Chien-wen
論文名稱: 應用繞射光柵技術於頻域光學斷層掃描系統之研究
Studies on Diffraction Gratings Pair Over Fourier Domain Optical Coherence Tomography
指導教授: 鄭旭志
Cheng, Hsu-chih
黃振發
Huang, Jen-Fa
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 74
中文關鍵詞: 低同調干涉術(LCI)相位偏移光繞射效應光干涉效應光學斷層掃描術(OCT)繞射光柵群速延遲
外文關鍵詞: Optical coherence tomography(OCT), Optics diffraction effect, Group delay, Diffraction grating, Phase shifting, Low-coherence interference(LCI), Optics interference effect
相關次數: 點閱:87下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以低同調干涉術(LCI)為基礎的光學斷層掃描術(OCT)已被廣泛的應用於生物醫學影像擷取中。光學斷層掃描術最大的特色,在於其系統的非侵入式量測、高解析度及即時取樣速度,而頻域光學斷層系統在(FD-OCT)此方面有較大的優勢。頻域光學斷層系統利用干涉頻譜的量測方式,不僅提升光學斷層系統的取像速度,也改善其系統的靈敏度。為了提升頻域光學斷層系統的取像分析能力及速度,相位偏移的演算理論占有不可或缺的地位,對於在樣品測量分析有較優勢的系統解析以及分析速度。在此,我們提出一套新的系統,結合平行繞射光柵對(Parallel Diffraction Gratings Pair)模組的影像擷取系統來提升相位偏移演算理論的正確性,並且有利於提升頻域光學斷層系統的分析。我們利用平行繞射光柵對模組的空間頻譜分離特性,在空間以及時域上區分出各個不同波長間的延遲時間,利用不同頻譜所對應到的空間距離延遲之特性,加以設計各頻段的時間間距,製造出線性群速延遲(linear group delay)的特性,產生更接近於π相位偏移值來改善傳統的相位偏移演算理論(Phase-Shifting algorithm),進而提升頻域光學掃描系統的即時取像能力及穩定度。
    本論文研究並比較傳統的相位偏移演算理論以及平行光柵對模組的群速延遲相位偏移演算理論在頻域光學斷層系統的取像分析,分別在單層與多層樣品架構,經由樣品模擬分析之後,此群速延遲相位偏移演算理論系統之效能及誤差度確實較優於傳統的相位偏移演算理論系統,較有利於提升頻域光學斷層系統影像解析的正確度。

    The technique of optical interference with the low coherence interferometry (LCI) having already the extensively application in optical biomedical imaging system of optical coherence tomography (OCT). The greatest characteristic of this imaging scheme, lie in high non-invade measurement、 high system resolution、 and Real-Time Imaging speed, therefore it has the greater advantage in this respect with Fourier domain optical coherence tomography (FD-OCT) system. FD-OCT system using the method of capture spectral interferogram not only improves the imaging acquisition time, but also promote the system sensitivity. In order to promote the analysis of imaging speed and ability, the phase-shifting method has an important situation to provide the larger advantage for system demodulation and imaging speed in OCT system. For this, in this paper, we propose a new system, it is right to combine the parallel diffraction grating (Parallel Diffraction Gratings Pair) Image, model of linear group delay promote the accuracy of phase-shifting method and improve the analysis process with FD-OCT system. We utilize parallel diffraction gratings pair to separate the characteristic of the space frequency spectrum to make linear group delay under the space distinguish for the postponement time among each different wavelength with the land in time, is it with space characteristic that distance postpone that get that frequency spectrum correspond to, design every time interval of frequency band to produce the linear group delay characteristic and provide the near π phase-shifting improving the efficiency of traditional phase-shifting method , and then improve the ability and stability of optical systematic scanning.
    In these, comparison of the imaging analysis between traditional λ0/4 method and group delay based method by the different condition of sample structure of single layer、multi-layers respectively. By the simulation and analysis result, this technique of group delay based phase-shifting method has better system efficiency and inaccuracy proportion to provide the accuracy of FD-OCT imaging system than traditional method.

    摘要 I ABSTRACT III TABLE OF CONTENTS VI List of Tables VIII List of Figure IX Chapter 1. Introduction 1 1.1 Research motive 2 1.2 Research purpose 3 1.3 Overview of Chapters 4 Chapter 2. Overviews on Optical Coherence Tomography 5 2.1 Principle of OCT 6 2.1.1 Interference Principle 6 2.1.2 Light Source 9 2.1.3 Axial Resolution 12 2.1.4 Lateral Resolution & field of depth 15 2.1.5 Sensitivity 16 2.2 Time-Domain Optical Coherence Tomography 19 2.3 Frequency-Domain Optical Coherence Tomography 24 2.3.1 Phase-shifting algorithm 27 Chapter 3. New system structure and principle 32 3.1 Parallel Gratings pair principle 32 3.2 Group Delay based Phase-Shifting System 39 Chapter 4. System Performance Simulation 43 4.1 Group Delay based Phase-Shifting Algorithm Performance 44 4.2 Comparison of Group delays based methods with λ0 / 4 methods and ideal method 56 Chapter 5. Conclusions 69 References 70 自述(About the Author) 74

    [01] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science, vol. 254, pp. 1178–1181, 1991.
    [02] R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express, vol. 11, pp. 889-894, 2003.
    [03] R. C. Youngquist, S. Carr, and D. E. N. Davies, “Optical coherence domain reflectometry: A new optical evaluation technique,” Opt. Lett., vol. 12, pp. 158–160, 1987.
    [04] A. F. Fercher, K. Mengedoht, and W. Werner, “Eye-length measurement by interferometry with partially coherent light,” Opt. Lett., vol. 13, pp. 1867–1869. 1988.
    [05] W. Clivaz, F. Marquis-Weible, R. P. Salathe, R. P. Novak, and H. H. Gilgen, “High-resolution reflectometry in biological tissue,” Opt. Lett., vol. 17, pp. 4–6, 1992.
    [06] M. J. Everett, K. Schoenenberger, B. W. Colston, Jr., and L. B. Da Si, “Birefringence characterization of biological tissue by use of optical coherence tomography,” Opt. Lett., vol. 23, pp. 228-230, 1998.
    [07] L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett., vol. 27, pp. 530-532, 2002.
    [08] R. Passy, N. Gisin, J. P. von der Weid, and H. H. Gilgen, “Experimental and Theoretical Investigations of Coherent OFDR with Semiconductor Laser Sources,” J. Ligh. Tech., vol. 12, pp. 1622-1630, 1994.

    [09] M. A. Choma, M. V. Sarunic, C. Yang, J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express, vol. 11,pp. 2183-2189, 2003.
    [10] P. Yeh., Optical Waves in Layered Media, 1998.
    [11] E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, ”Full-field optical coherence microscopy,” Opt. Lett., vol.23, pp. 244-246, 1998.
    [12] A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. B. Moreno, R. Leitgeb, W. Drexler, and H. Sattmann,” A thermal light source technique for optical coherence tomography,” Opt. Commun., vol. 185, pp. 57-64, 2000.
    [13] B. C. Wilson, and S. L. Jacques, ”Optical reflectance and transmittance of tissues: principles andapplications,” IEEE J. Quan. Electro., vol. 26, pp.2186-2199, 1990.
    [14] Guenther Robert D. , Modern Optics, 1990.
    [15] J. G. Fulimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nature Med., vol. 1, pp. 970-972, 1995.
    [16] M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fulimoto, “Optical coherence tomography of the human retina,” Arch. Oph.., vol. 113, pp. 325-332, 1995.
    [17] M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett., vol. 27, pp. 1415-1417, 2002.
    [18] B. Liu, and M. E. Brezinski, “Theoretical and practical considerations on detection performance of time domain, frequency domain, and swept source optical coherence tomography,” J. Biomed. Opt., vol. 12, 044007, 2007.
    [19] A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Appl. Phys., vol. 66, pp. 239-303, 2003.
    [20] J. M. Schmitt, “Optical Coherence Tomography (OCT): A Review,” Quan. Electron., vol. 5, pp. 1205-1215, 1999.
    [21] T. Fukano, I. Yamaguchi, “Simultaneous measurement of thicknesses and refractive indices of multiple layers by a low-coherence confocal interference microscope,” Opt. Lett., vol. 21, pp. 1942-1964, 1996.
    [22] P. H. Tomlins, and R. K. Wang, “Theory, development and applications of Optical Coherence Tomography,” Appl. Phys., vol. 38, pp. 2519-2535, 2005.
    [23] R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express, vol. 12, pp. 2156-2165, 2004.
    [24] B. Cense, and N. A. Nassif, “Ultrahigh-resolution high speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express, vol. 12, pp. 2435-2447, 2004.
    [25] Y. Yasuno, S. Makita, T. Endo, G. Aoki, H. Sumimura, M. Itoh, and T. Yatagai, “One-shot-shifting Fourier domain optical coherence tomography by reference wavefront tilting,” Opt. Soc. Am., 2004.
    [26] R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-doamin optical coherence tomography,” Opt. Lett., vol. 28, pp. 2201-2203, 2003.
    [27] A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun., vol. 117, pp. 43–48, 1995.

    [28] P. H. Tomlins, and R. K. Wang, “Matrix approach to quantitative refractive index analysis by Fourier domain optical coherence tomography,” J. Opt. Soc. Am. A., vol. 23, pp. 1897-1907, 2006.
    [29] E. B. Treacy, “Compression of picosecond light sources,” Phys. Lett. A., vol. 28, pp. 34-35, 1968.
    [30] J. B. Keller, “Geometrical Theory of Diffraction,” J. Opt. Soc. Am., vol. 52, pp. 116-130, 1962.
    [31] E. B. Treacy, “Optical Pulse Compression With Diffraction Gratings,” IEEE J. Quan. Electro., vol. QE-5, pp. 454-458, 1969.
    [32] J. O. White, C. Ludwig, and J. Kuhl, “Response of grating pairs to single-cycle electromagnetic pulses,” J. Opt. Soc. Am. B, vol. 12, pp. 1687-1694, 1995.
    [33] P. H. Tomlins, W. M. Palin, and R. K. Wang, “Time-resolved simultaneous measurement of group index and physical thickness during photopolymerization of resin-based dental composite,” J. Biomed. Opt., vol. 12, 014020, 2007.
    [34] Z. Wang, Z. Xu, and Z. Q. Zhang, “A New Theory for Treatment of a Pulsed Beam Propagating Through a Grating Pair,” IEEE J. Quan. Electro., vol. 37, pp. 1-11, 2001.
    [35] P. H. Tomlins, and R. K. Wang, “Layer Dependent Refractive Index Measurement by Fourier Domain Optical Coherence Tomography,” Proc. of SPIE, vol. 6079, 2006.
    [36] A. Yariv, and P. Yen, Photonics, Sixth Edition, 2005.
    [37] Azana, J. Muriel, M.A. Chen, L.R. Smith, P.W.E., “ Fiber Bragg grating period reconstruction using time-frequencysignal analysis and application to distributed sensing,” J. Ligh. Tech., vol. 19, pp. 646-654, 2001.

    下載圖示 校內:立即公開
    校外:2008-07-08公開
    QR CODE