| 研究生: |
彭建霖 Peng, Chien-Lin |
|---|---|
| 論文名稱: |
透過高解析度空拍照片與影像紋理分析方法辨識河道物理棲地之研究 Mapping Physical Habitat of Long-Reach Stream Using Image Processing and Pixel Texture Analysis through High Resolution Aerial Imagery |
| 指導教授: |
孫建平
Suen, Jain-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 物理棲地 、紋理分析 、水面流態 、影像處理 、模式分類 |
| 外文關鍵詞: | physical habitat, texture analysis, surface flow type, image processing, model classification |
| 相關次數: | 點閱:85 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
空拍機(UAV)近年來的興起,促使許多遙測相關研究進步,理由為UAV操作簡單,便於研究區域內進行空中拍攝,且拍攝自由度高、容易取得圖資影像。本研究將利用UAV對河川物理棲地結合現地調查,對河道棲地進行探討。
本研究透過現地物理棲地調查,調查時間自2018年1月至3月,地點為屏東縣萬巒鄉之五溝水,調查物理棲地類型包含淺瀨區(Riffle)、淺流區(Glide)與深潭區(Pool),淺瀨區水面流態含有劇烈波紋;深潭區則水面則平滑;淺流區水面則介於淺瀨區與深潭區兩者之間,屬過渡區。研究主要目標有二,(一)透過現地辨識河川物理棲地與調查物理棲地因子特徵,並利用統計方法單因子變異數分析,了解不同棲地之特徵差異性;(二)透過UAV拍攝之空拍圖結合影像處理與紋理分析,並運用最大概似模式進行物理棲地分類。
研究結果顯示利用流速、水深、福祿數與流速水深比等因子中,單因子變異數分析均有顯著差異,而透過事後多重比較法則顯示福祿數最能有效呈現不同棲地之數據差異性。模式分類方面透過分三類物理棲地,總體分類精度達71.95%,Kappa係數為0.526;分兩類棲地(去除淺流區)總體分類精度為83.09%,Kappa係數為0.662。若模式分類應用於五溝水中,分三類棲地顯示淺瀨區占23.15%、淺流區占49.23%、深潭區占27.62%;分兩類棲地顯示淺瀨區占38.97%、深潭區占61.03%。透過空拍圖與模式分類於河道物理棲地之應用,可迅速了解河道棲地內之分佈情形,並提供水生生物間之應用範疇。
Field survey in this paper focuses on Wu Gou Shui, Wanluan Township, Pingtung County. This paper contains two sections. In section 1, survey team identified the physical habitat by surface flow type. The criteria for the assessment were: swiftly flow with a high proportion of its water surface broken as Riffle; smooth water surface as Pool; and a wavy water surface as Glide. Velocity, water depth were measured at each physical habitat, and we analyzed velocity, water depth, Froude number and velocity/depth ratio using ANOVA statistic. In section 2, for mapping physical habitat, we photographed the river image by unmanned aerial vehicle (UAV) and combined image processing with texture analysis. Furthermore, we mapped physical habitat using Maximum-likelihood classification. In statistical analysis, velocity, water depth, Froude number and velocity/depth all showed significant differences on ANOVA. And Froude Number showed the most significant differences on Post hoc test. In classification of model, overall classification accuracy and Kappa coefficient are 71.95% and 0.526 for three types of physical habitat, 83.09% and 0.662 for two types of classification (remove Glide). Physical habitat mapping of the study reach recorded a distribution of 23.15% riffles, 49.23% glides and 27.62% pools in three types of classification, compared with 38.97% riffle and 61.03% in two types of classification. This research can quickly show the distribution of habitat through aerial imagery and model classification, and hope it can also provide application in aquatic environment.
Anys, H., Bannari, A., He, D. C., & Morin, D. Texture analysis for the mapping of urban areas using airborne MEIS-II images. In Proceedings of the First International Airborne Remote Sensing Conference and Exhibition, Vol. 3, pp. 231-245. (1994).
Belletti, B., Rinaldi, M., Bussettini, M., Comiti, F., Gurnell, A. M., Mao, L., ... & Vezza, P.. Characterising physical habitats and fluvial hydromorphology: A new system for the survey and classification of river geomorphic units. Geomorphology, 283, 143-157. (2017).
Bentley, S. G., England, J., Heritage, G., Reid, H., Mould, D., & Bithell, C. Long‐reach Biotope Mapping: Deriving Low Flow Hydraulic Habitat from Aerial Imagery. River Research and Applications, 32(7), 1597-1608. (2016).
Bhowmik, N. G., & Demissie, M. Carrying capacity of flood plains. Journal of the Hydraulics Division, 108(3), 443-452. (1982).
Colomina, I., & Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 92, 79-97. (2014).
Environment Agency. River Habitat Survey in Britain and Ireland: Field Survey Guidance Manual: 2003 Version. Forest Research. (2003).
Gilvear, D. J., Sutherland, P., & Higgins, T. An assessment of the use of remote sensing to map habitat features important to sustaining lamprey populations. Aquatic Conservation: Marine and Freshwater Ecosystems, 18(6), 807-818. (2008).
Grinnell, J. Field tests of theories concerning distributional control. The American Naturalist, 51(602), 115-128. (1917).
Han, C. C., K. S. Tew, and L.S. Fang. Spatial and temporal variations of two cyprinids in a subtropical mountain reserve- a result of habitat disturbance from climate change. Ecology of Freshwater Fish, 16:395-403. (2007).
Hodgson, M. E., Jensen, J. R., Tullis, J. A., Riordan, K. D., & Archer, C. M.. Synergistic use of lidar and color aerial photography for mapping urban parcel imperviousness. Photogrammetric Engineering & Remote Sensing, 69(9), 973-980. (2003)
Jowett, I. G. A method for objectively identifying pool, run, and riffle habitats from physical measurements. New Zealand journal of marine and freshwater research, 27(2), 241-248. (1993).
Laliberte, A. S., & Rango, A.. Incorporation of texture, intensity, hue, and saturation for rangeland monitoring with unmanned aircraft imagery. The International Archives of the Photogrammetry, Remote Sensing, and Spatial Information Sciences. (2008)
Laliberte, A. S., Herrick, J. E., Rango, A., & Winters, C.. Acquisition, orthorectification, and object-based classification of unmanned aerial vehicle (UAV) imagery for rangeland monitoring. Photogrammetric Engineering & Remote Sensing, 76(6), 661-672. (2010)
Lee, J. H., Kil, J. T., & Jeong, S. Evaluation of physical fish habitat quality enhancement designs in urban streams using a 2D hydrodynamic model. Ecological Engineering, 36(10), 1251-1259. (2010).
Legleiter, C., Marcus, W. A., & Lawrence, R.. Effects of sensor resolution on mapping instream habitats. Photogrammetric Engineering and Remote Sensing, 68(8), 801-807. (2002)
Lillesand, T. M., Kiefer, R. W., & Chipman, J. Remote sensing and image analysis. John Wiley and Sons, New York. (2000).
Maddock, I. The importance of physical habitat assessment for evaluating river health. Freshwater biology, 41(2), 373-391. (1999).
Marcus, W. A., Legleiter, C. J., Aspinall, R. J., Boardman, J. W., & Crabtree, R. L. High spatial resolution hyperspectral mapping of in-stream habitats, depths, and woody debris in mountain streams. Geomorphology, 55(1-4), 363-380. (2003).
Milan, D. J., Heritage, G. L., Large, A. R. G., & Entwistle, N. S. Mapping hydraulic biotopes using terrestrial laser scan data of water surface properties. Earth Surface Processes and Landforms, 35(8), 918-931. (2010).
Newson, M. D., Harper, D. M., Padmore, C. L., Kemp, J. L., & Vogel, B. A cost‐effective approach for linking habitats, flow types and species requirements. Aquatic conservation: Marine and freshwater ecosystems, 8(4), 431-446. (1998).
O'Neill, M. P., & Abrahams, A. D. Objective identification of pools and riffles. Water resources research, 20(7), 921-926. (1984).
Pridmore, R. D., & Roper, D. S. Comparison of the macroinvertebrate faunas of runs and riffles in three New Zealand streams. New Zealand journal of marine and freshwater research, 19(3), 283-291. (1985).
Sandin, L. The effects of catchment land-use, near-stream vegetation, and river hydromorphology on benthic macroinvertebrate communities in a south-Swedish catchment. Fundamental and Applied Limnology/Archiv für Hydrobiologie, 174(1), 75-87. (2009).
Smith, A. K., & Sklarew, D. A stream suitability index for brook trout (Savelinus fontinalis) in the Mid-Atlantic United States of America. Ecological indicators, 23, 242-249. (2012).
Spence, C., & Mengistu, S.. Deployment of an unmanned aerial system to assist in mapping an intermittent stream. Hydrological Processes, 30(3), 493-500. (2016)
Tamminga, A., Hugenholtz, C., Eaton, B., & Lapointe, M. Hyperspatial remote sensing of channel reach morphology and hydraulic fish habitat using an unmanned aerial vehicle (UAV): a first assessment in the context of river research and management. River Research and Applications, 31(3), 379-391. (2015).
Zavadil, E. A., Stewardson, M. J., Turner, M. E., & Ladson, A. R. An evaluation of surface flow types as a rapid measure of channel morphology for the geomorphic component of river condition assessments. Geomorphology, 139, 303-312. (2012).
汪靜明,大甲溪水資源環境教育,臺北:經濟部水利署台北辦公區,(2000)
林于玄,應用微測壓管改良伏流水估算之水利傳導係數,國立成功大學水利及海洋工程學系碩士論文,1-109,(2016)
經濟部水利署,和平溪水系河川情勢調查,(2014)