簡易檢索 / 詳目顯示

研究生: 朱牧人
Chu, Mu-Jen
論文名稱: 利用高精確度鎘同位素質譜技術追蹤環境沉積物汙染來源
Precise Measurement of Cd Isotopes in Sediments for Tracing Environmental Pollution Sources
指導教授: 游鎮烽
You, Chen-Feng
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 68
中文關鍵詞: 鎘同位素分化重金屬汙染多接受器感應耦合電漿質譜儀
外文關鍵詞: Cd isotopic fractionation, heavy metal pollution, multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS)
相關次數: 點閱:127下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣地狹人稠,農業土地的使用常緊鄰工業地區而有重金屬汙染之疑慮。鎘在自然界有八個穩定同位素 (106-116amu),地球化學系統中鎘同位素之分化介於δ114/110Cd=-0.3~0.4‰範圍之間,而工業高溫程序將較輕核種以飛灰形式釋出、較重核種以熔渣殘留而造成明顯之同位素分化(δ114/110Cd=-0.28~0.28‰),因此可利用其顯著之分化特性釐清並示蹤自然與污染訊號。本研究應用高精度鎘同位素方法量測工業原料、放流水、灌溉用水、地下水、底泥、集塵灰及氣膠質等樣品,系統性定量樣品之重金屬濃度及鎘同位素,以高解析感應耦合電漿質譜儀(Finnigan Element2)定量微量元素濃度,精密度約為3%;利用多接收器感應耦合電漿質譜儀(Neptune)量測鎘同位素,精密度可小於0.1‰。各樣品經消化後使用AG 1-X8及TRU兩階段樹脂進行純化,成功地將鎘與其他干擾元素(鈀、銦、錫)分離以達純化目的。鎘同位素分析前,添加NIST978a銀標準品至樣品中以EEN( Empirical External Normalization)及SSB(Standard Sample Bracketing)方法修正質譜儀之同位素分化與漂移,而SPEX標準品長時間之再現性為δ114/110CdJMC = 0.34±0.08‰ (2S.D., n=18)。岩石基質樣品純化後殘留之元素錫所造成之同重素干擾可利用113Cd成功地做同位素的修正。研究結果顯示農業灌溉用水鎘濃度範圍為10ppt~1ppb,未超過環保署污染標準,鎘同位素比值範圍為δ114/110CdJMC =-0.5‰~0.7‰;沉積物樣品濃度範圍為1~11ppm,鎘同位素比值範圍為δ114/110CdJMC =-0.65‰~0.95‰;但富集因子與地質累積指數同時顯示研究地區有嚴重的重金屬汙染(汞、鉛、鉻、砷……等)。由鎘同位素技術顯示距離工廠越近之汙染來自工業熔渣,較遠區域傳遞途徑主要由大氣沉降而來,受到數據限制尚未能直接指示汙染源,未來將進一步分析工業原料與集塵灰,以釐清工業程序所造成之同位素分化程度,並標定農作物與土壤之鎘同位素,利用鎘濃度與同位素之變化區別不同端源,藉此指示各樣品與污染源之混雜情形,針對研究地區提供系統性之評估,並釐清汙染遷移之特性與潛能,建立汙染傳遞模型。

    Taiwan is a densely populated country with lots of crowded and overused land. The rapidly developing economic growths and industrialization resulted serious heavy metal pollution on agriculture land nearby the factories. Cadmium (Cd) has eight stable isotopic at a mass range from 106 to 116 amu, where a natural isotope fractionation of -0.08~0.05‰/amu was found in various terrestrial samples. Significant isotope fractionation of Cd (-0.28~0.28‰/amu) was detected only during industrial processes at very high temperature, resulting in the lighter nuclides enriched in aerosols and ashes, and heavy nuclides remained in slag. The fractionated Cd isotopic ratios driven by the artificial activities have therefore become specific markers for distinguishing the sources from other naturally available Cd. In this study, we present a high precision Cd isotopic determination method using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS, Neptune) with a combined standard-sample bracketing (SSB) procedures and empirical external normalization (EEN) for mass bias correction during the measurement. A two-stage chemical separation using AG 1-X8 and TRU resin was applied to purify Cd from potential interference elements (Pd, In and Sn). The long term reproducibility of replicated standard measurement was δ114/110CdJMC-SPEX = 0.34±0.08‰ (2S.D., n=18). Significant isobaric interference occurred in some rock samples that containing high amounts of Sn, however it can be corrected successfully by monitoring the 113Cd. The industrial wastes, including effluent water, irrigation water, ground water, sediment, and dust, were systematic processed in this study to further quantify the possible pollution sources and the contamination spreading pathways. Our preliminary result reveals that about 10ppt~1ppb of Cd was found in irrigation water, lower than the EPA’s standard, and about 1~11ppm of Cd in sediments was found. The δ114/110CdJMC value of -0.5‰~0.7‰ and -0.65‰~0.95‰ were determined in irrigation water and sediment, respectively. However, the enrichment factor and geo-accumulation index both shows great pollution of other heavy metals of Hg, Pb, Cr and As, etc. The result of Cd isotope reveals that the main polluted reason for the area surrounds the factory is contributed to the industrial sludge but affected by the atmospheric transport away from the factory. Due to the limited isotopic data available, industrial materials and dusts samples are being processed for clarifying the possibility of Cd contamination on crops and soils. The high precision Cd isotopic determination conducted in this study helps to clarify the extent of Cd isotopic fractionation in local high pollution industries, their possible sources and migration of Cd pollution in natural environment.

    摘要 (Abstract in Mandarin)…………2 Abstract…4 Acknowledgment……………6 Table of Content……………7 List of Tables……8 List of Figures……8 Chapter1: Introduction………9 Chapter2: Methodology………13 2.1 Materials and chemistry………13 2.1.1 Introduction………13 2.1.2 Study area and sampling………15 2.1.3 Chemical digestion………21 2.2 Instrumentation………23 2.2.1 Introduction………23 2.2.2 Instrumental Mass Fractionation Laws………26 2.2.3 Instrumental Mass Fractionation Correction………27 2.2.4 Empirical External Normalization (EEN)………32 2.3 Matrix separation………33 2.3.1 Matrix Effect………33 2.3.2 Chemical Separation………35 2.4 Analytical procedure………39 2.5 Accuracy and precision………41 Chapter3: Results and Discussion………43 3.1 Correction for Sn interference………43 3.2 Enrichment factor and geo-accumulation index……47 3.2.1 Introduction……47 3.2.2 Enrichment factor……47 3.2.3 Geo-accumulation index……50 3.3 Cd isotope values of natural samples……52 3.3.1 Introduction……52 3.3.2 Cd isotopic composition in natural samples……54 3.3.3 Comparison with previous data……56 3.3.4 Comparison with distance from the factory……59 3.3.5 Results and discussions……61 Chapter4: Conclusion……62 References……64 List of Tables Table 2.1 | Experimental flow chart…………22 Table 2.2 | Potential interferences on Cd isotopes………………………24 Table 2.3 | Instrumental operating conditions and measurement parameters………25 Table 2.4 | Cd purification standard operation procedures………….37 Table 3.1 | Summary of enrichment factors for average of all heavy metal elements……49 Table 3.2 | Summary of geo-accumulation index for average of all heavy metal elements………51 Table 3.3 | Isotope and concentration of natural samples……53 List of Figures Figure 1.1 | Cd stable isotope data for various terrestrial sediments and rocks and selected meteorites………11 Figure 1.2 | Cd isotope data for samples from Zn-Pb smelting/refining plants …12 Figure 2.1 | The evaluation of chemical reagent background…………14 Figure 2.2 | Sampling location of irrigation ditch at TCHL…16 Figure 2.3 | Sampling location of water samples at Fung-Xiang steel factory, TCHL………17 Figure 2.4 | Sampling location of irrigation ditch at YLHW…18 Figure 2.5 | Sampling location of sediments at TCHL………………19 Figure 2.6 | Sampling location of sediments at YLHW………………20 Figure 2.7 | High-pressure bomb for sediment digestion……22 Figure 2.8 | Schematic of Thermo Scientific Neptune………24 Figure 2.9 | Schematic of cup configuration…………25 Figure 2.10 | Cd versus silver instrumental mass fractionation (Previous study)……………28 Figure 2.11 | Cd versus silver instrumental mass fractionation (This study)……29 Figure 2.12 | Mass independent fractionation…………30 Figure 2.13 | Flow chart for EEN Cd isotope combined with SSB analytic protocol…………31 Figure 2.14 | Deviation of instrumental mass fractionation factor……32 Figure 2.15 | Matrix effect on Cd isotope measurements…34 Figure 2.16 | Elution curves of the two-stage separation technique………38 Figure 2.17 | Schematic of standard-sample bracketing method………40 Figure 2.18 | Accuracy of NIST RM3108 normalized to BAM I012……41 Figure 2.19 | Long-term reproducibility of Cd isotope analysis………42 Figure 3.1 | Evaluation of Sn interference correction on Cd IC analysis……………44 Figure 3.2 | Mass dependent fractionation line between 112Cd, 113Cd and 114Cd, 113Cd ….45 Figure 3.3 | Evaluation of Sn interference and correction……46 Figure 3.4 | Evaluation of Cd isotope value from different corrections…46 Figure 3.5 | Cd isotopic composition versus the inverse Cd concentration (ppm)54 Figure 3.6 | Cd isotopic composition versus the inverse Cd concentration (ppm) in TCHL……………55 Figure 3.7 | Cd isotopic composition versus the inverse Cd concentration (ppm) in YLHW……………55 Figure 3.8 | Comparison of this study data and previous Cd isotope data……57 Figure 3.9 | Cd isotopic composition versus the inverse Cd concentration (ppm) with water value plotted……………58 Figure 3.10 | Cd isotopic composition of polluted topsoils and refinery materials versus the sampling distance from the refinery (meters) in previous study…………59 Figure 3.11 | Cd isotopic composition of polluted topsoils and refinery materials versus the sampling distance from the factory (meters) in this study………10

    Abouchami, W., Galer, J. G. S., Horner, T. J., Rehkämper, M., Wombacher, F., Xue, Z., Lambelet, M., Gault-Ringold, M., Stirling, C. H., Schönbächler, M., Shiel, A. E., Weis, D. and Philip F. Holdship (2012) A Common Reference Material for Cd Isotope Studies-NIST SRM 3108. International Association of Geoanalysts doi: 10.1111/j.1751-908X.2012.00175.x

    Baron S, Lavoie M, Ploquin A, Carignan J, Pulido M, De Beaulieu JL (2005) Record of metal workshops in peat deposits: History and environmental impact on the Mont Lozere Massif, France. Environmental science & technology 39(14):5131-5140 doi:Doi 10.1021/Es048165l

    Carignan J, Gariepy C (1995) Isotopic Composition of Epiphytic Lichens as a Tracer of the Sources of Atmospheric Lead Emissions in Southern Quebec, Canada. Geochimica et Cosmochimica Acta 59(21):4427-4433 doi:Doi 10.1016/0016-7037(95)00302-G

    Chen CW, Kao CM, Chen CF, Dong CD (2007) Distribution and accumulation of heavy metals in the sediments of Kaohsiung Harbor, Taiwan. Chemosphere 66(8):1431-1440 doi:DOI 10.1016/j.chemosphere.2006.09.030

    Choi YH, Hu H, Mukherjee B, Miller J, Park SK (2012) Environmental Cd and Lead Exposures and Hearing Loss in US Adults: The National Health and Nutrition Examination Survey, 1999 to 2004. Environ Health Persp 120(11):1544-1550 doi:Doi 10.1289/Ehp.1104863

    Cloquet C, Carignan J, Libourel G (2006a) Atmospheric pollutant dispersion around an urban area using trace metal concentrations and Pb isotopic compositions in epiphytic lichens. Atmos Environ 40(3):574-587 doi:DOI 10.1016/j.atmosenv.2005.09.073

    Cloquet C, Carignan J, Libourel G, Sterckeman T, Perdrix E (2006b) Tracing source pollution in soils using Cd and lead isotopes. Environmental science & technology 40(8):2525-2530 doi:Doi 10.1021/Es052232+

    Cloquet C, Rouxel O, Carignan J, Libourel G (2005) Natural Cd isotopic variations in eight geological reference materials (NIST SRM 2711, BCR 176, GSS-1, GXR-1, GXR-2, GSD-12, Nod-P-1, Nod-A-1) and anthropogenic samples, measured by MC-ICP-MS. Geostandards and Geoanalytical Research 29(1):95-106 doi:DOI 10.1111/j.1751-908X.2005.tb00658.x

    Covelli S, Fontolan G (1997) Application of a normalization procedure in determining regional geochemical baselines. Environ Geol 30(1-2):34-45
    Dauvalter V (1994) Heavy-Metals in Lake-Sediments of the Kola-Peninsula, Russia. Science of the Total Environment 158(1-3):51-61 doi:Doi 10.1016/0048-9697(94)90044-2

    Elbazpoulichet F, Holliger P, Wei WH, Martin JM (1984) Lead Cycling in Estuaries, Illustrated by the Gironde Estuary, France. Nature 308(5958):409-414 doi:Doi 10.1038/308409a0

    Flegal AR, Nriagu JO, Niemeyer S, Coale KH (1989) Isotopic Tracers of Lead Contamination in the Great-Lakes. Nature 339(6224):455-458 doi:Doi 10.1038/339455a0

    Gao B, Liu Y, Sun K, Liang X, Peng P, Sheng G, Fu J (2008a) Precise determination of Cd and lead isotopic compositions in river sediments. Analytica chimica acta 612(1):114-120 doi:10.1016/j.aca.2008.02.020

    Gao B, Liu Y, Sun K, Liang XR, Peng P, Sheng G, Fu J (2008b) Precise determination of Cd and lead isotopic compositions in river sediments. Analytica chimica acta 612(1):114-120 doi:DOI 10.1016/j.aca.2008.02.020

    Ghrefat H, Yusuf N (2006) Assessing Mn, Fe, Cu, Zn, and Cd pollution in bottom sediments of Wadi Al-Arab Dam, Jordan. Chemosphere 65(11):2114-2121 doi:DOI 10.1016/j.chemosphere.2006.06.043

    Gonzalez-Macias C, Schifter I, Lluch-Cota DB, Mendez-Rodriguez L, Hernandez-Vazquez S (2006) Distribution, enrichment and accumulation of heavy metals in coastal sediments of Salina Cruz Bay, Mexico. Environ Monit Assess 118(1-3):211-230 doi:DOI 10.1007/s10661-006-1492-8

    Haack UK, Gutsche FH, Plessow K, Heinrichs H (2002) On the isotopic composition of Pb in cloud waters in Central Germany. A source discrimination study. Water Air Soil Poll 139(1-4):261-288 doi:Doi 10.1023/A:1015864103834
    Hansmann W, Koppel V (2000) Lead-isotopes as tracers of pollutants in soils. Chemical Geology 171(1-2):123-144 doi:Doi 10.1016/S0009-2541(00)00230-8

    Hart SR, Zindler A (1989) Isotope Fractionation Laws - a Test Using Calcium. Int J Mass Spectrom 89(2-3):287-301 doi:Doi 10.1016/0168-1176(89)83065-4
    Hong SM, Candelone JP, Patterson CC, Boutron CF (1994) Greenland Ice Evidence of Hemispheric Lead Pollution 2-Millennia Ago by Greek and Roman Civilizations. Science 265(5180):1841-1843 doi:DOI 10.1126/science.265.5180.1841

    Horner TJ, Schonbachler M, Rehkamper M, Nielsen SG, Williams H, Halliday AN, Xue Z, Hein JR (2010) Ferromanganese crusts as archives of deep water Cd isotope compositions. Geochem Geophy Geosy 11 doi:Artn Q04001
    Doi 10.1029/2009gc002987

    Johansson K, Andersson A, Andersson T (1995) Regional Accumulation Pattern of Heavy-Metals in Lake-Sediments and Forest Soils in Sweden. Science of the Total Environment 160-61:373-380 doi:Doi 10.1016/0048-9697(95)04370-G

    Lacan F, Francois R, Ji YC, Sherrell RM (2006) Cd isotopic composition in the ocean. Geochimica et Cosmochimica Acta 70(20):5104-5118 doi:DOI 10.1016/j.gca.2006.07.036

    Loska K, Cebula J, PelczaR J, Wiechula D, Kwapulinski J (1997) Use of enrichment, and contamination factors together with geoaccumulation indexes to evaluate the content of Cd, Cu, and Ni in the Rybnik water reservoir in Poland. Water Air Soil Poll 93(1-4):347-365 doi:Doi 10.1023/A:1022121615949

    Marcantonio F, Flowers G, Thien L, Ellgaard E (1998) Lead isotopes in tree rings: Chronology of pollution in Bayou Trepagnier, Louisiana. Environmental science & technology 32(16):2371-2376 doi:Doi 10.1021/Es980109v

    Marechal CN, Telouk P, Albarede F (1999) Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chemical Geology 156(1-4):251-273 doi:Doi 10.1016/S0009-2541(98)00191-0

    Monna F, Aiuppa A, Varrica D, Dongarra G (1999) Pb isotope composition in lichens and aerosols from eastern Sicily: Insights into the regional impact of volcanoes on the environment. Environmental science & technology 33(15):2517-2523 doi:Doi 10.1021/Es9812251

    Mwamburi J (2003) <Variations in trace elements in bottom sediments of major rivers in Lake Victoria’s basin, Kenya.pdf>. Lakes Reservoirs Research Management 8:5~13

    Myong JP, Kim HR, Baker D, Choi B (2012) Blood Cd and moderate-to-severe glomerular dysfunction in Korean adults: analysis of KNHANES 2005-2008 data. Int Arch Occ Env Hea 85(8):885-893 doi:DOI 10.1007/s00420-012-0737-9

    Poissant L, Schmit JP, Beron P (1994) Trace Inorganic Elements in Rainfall in the Montreal Island. Atmos Environ 28(2):339-346 doi:Doi 10.1016/1352-2310(94)90109-0

    Ripperger S, Rehkämper M (2007) Precise determination of Cd isotope fractionation in seawater by double spike MC-ICPMS. Geochimica et Cosmochimica Acta 71(3):631-642 doi:10.1016/j.gca.2006.10.005

    Rosman KJR, Chisholm W, Boutron CF, Candelone JP, Gorlach U (1993) Isotopic Evidence for the Source of Lead in Greenland Snows since the Late 1960s. Nature 362(6418):333-335 doi:Doi 10.1038/362333a0

    Rosman KJR, Chisholm W, Hong SM, Candelone JP, Boutron CF (1997) Lead from Carthaginian and Roman Spanish mines isotopically identified in Greenland ice dated from 600 BC to 300 AD. Environmental science & technology 31(12):3413-3416 doi:Doi 10.1021/Es970038k

    Rosman KJR, Delaeter JR (1976a) Isotopic Fractionation in Meteoritic Cd. Nature 261(5557):216-218 doi:Doi 10.1038/261216a0

    Rosman KJR, Delaeter JR (1976b) Low-Level Determinations of Environmental Cd. Nature 261(5562):685-686 doi:Doi 10.1038/261685a0

    Rosman KJR, Delaeter JR (1988) Cd Mass Fractionation in Unequilibrated Ordinary Chondrites. Earth and Planetary Science Letters 89(2):163-169 doi:Doi 10.1016/0012-821x(88)90168-9

    Rosman KJR, Delaeter JR, Chegwidden A (1980) Distribution of Cd in Cockburn Sound, Western Australia. Science of the Total Environment 16(2):117-130 doi:Doi 10.1016/0048-9697(80)90019-4

    Sands DG, Rosman KJR, de Laeter JR (2001) A preliminary study of Cd mass fractionation in lunar soils. Earth and Planetary Science Letters 186(1):103-111 doi:Doi 10.1016/S0012-821x(01)00233-3

    Schmitt AD, Galer SJG, Abouchami W (2009) Mass-dependent Cd isotopic variations in nature with emphasis on the marine environment. Earth and Planetary Science Letters 277(1-2):262-272 doi:DOI 10.1016/j.epsl.2008.10.025

    Shiel AE, Barling J, Orians KJ, Weis D (2009) Matrix effects on the multi-collector inductively coupled plasma mass spectrometric analysis of high-precision Cd and zinc isotope ratios. Analytica chimica acta 633(1):29-37 doi:10.1016/j.aca.2008.11.026

    Shiel AE, Weis D, Orians KJ (2010) Evaluation of zinc, Cd and lead isotope fractionation during smelting and refining. Science of the Total Environment 408(11):2357-2368 doi:DOI 10.1016/j.scitotenv.2010.02.016

    Shirahata H, Elias RW, Patterson CC, Koide M (1980) Chronological Variations in Concentrations and Isotopic Compositions of Anthropogenic Atmospheric Lead in Sediments of a Remote Subalpine Pond. Geochimica et Cosmochimica Acta 44(2):149-162 doi:Doi 10.1016/0016-7037(80)90127-1

    Shotyk W, Weiss D, Appleby PG, Cheburkin AK, Frei R, Gloor M, Kramers JD, Reese S, Van der Knaap WO (1998) History of atmospheric lead deposition since 12,370 C-14 yr BP from a peat bog, Jura Mountains, Switzerland. Science 281(5383):1635-1640 doi:DOI 10.1126/science.281.5383.1635

    Simonetti A, Gariepy C, Carignan J, Poissant L (2000) Isotopic evidence of trace metal sources and transport in eastern Canada as recorded from wet deposition. J Geophys Res-Atmos 105(D10):12263-12278 doi:Doi 10.1029/2000jd900073

    Telmer K, Bonham-Carter GF, Kliza DA, Hall GEM (2004) The atmospheric transport and deposition of smelter emissions: Evidence from the multi-element geochemistry of snow, Quebec, Canada. Geochimica et Cosmochimica Acta 68(14):2961-2980 doi:DOI 10.1016/j.gca.2003.12.022

    Tylmann W, Lysek K, Kinder M, Pempkowiak J (2011) Regional Pattern of Heavy Metal Content in Lake Sediments in Northeastern Poland. Water Air Soil Poll 216(1-4):217-228 doi:DOI 10.1007/s11270-010-0529-3

    Walraven N, vanOs BJH, Klaver GT, Baker JH, Vriend SP (1997) Trace element concentrations and stable lead isotopes in soils as tracers of lead pollution in Graft-DeRijp, the Netherlands. Journal of Geochemical Exploration 59(1):47-58 doi:Doi 10.1016/S0375-6742(96)00056-8

    Weiss D, Shotyk W, Appleby PG, Kramers ID, Cheburkin AK (1999) Atmospheric Ph deposition since the industrial revolution recorded by five Swiss peat profiles: Enrichment factors, fluxes, isotopic composition, and sources. Environmental science & technology 33(9):1340-1352 doi:Doi 10.1021/Es980882q

    Wombacher F, Rehkamper M (2003) Investigation of the mass discrimination of multiple collector ICP-MS using neodymium isotopes and the generalised power law. J Anal Atom Spectrom 18(11):1371-1375 doi:Doi 10.1039/B308403e

    Wombacher F, Rehkamper M (2004) Problems and suggestions concerning the notation of Cd stable isotope compositions and the use of reference materials. Geostandards and Geoanalytical Research 28(1):173-178 doi:DOI 10.1111/j.1751-908X.2004.tb01054.x

    Wombacher F, Rehkamper M, Mezger K (2004) Determination of the mass-dependence of Cd isotope fractionation during evaporation. Geochimica et Cosmochimica Acta 68(10):2349-2357 doi:DOI 10.1016/j.gca.2003.12.013

    Wombacher F, Rehkamper M, Mezger K, Munker C (2003) Stable isotope compositions of Cd in geological materials and meteorites determined by multiple-collector ICPMS. Geochimica et Cosmochimica Acta 67(23):4639-4654 doi:Doi 10.1016/S0016-7037(03)00389-2

    Yang L, Mester Z, Zhou L, Gao S, Sturgeon RE, Meija J (2011) Observations of large mass-independent fractionation occurring in MC-ICPMS: implications for determination of accurate isotope amount ratios. Analytical chemistry 83(23):8999-9004 doi:10.1021/ac201795v

    Yang SC, Lee DC, Ho TY (2012) The isotopic composition of Cd in the water column of the South China Sea. Geochimica et Cosmochimica Acta 98:66-77 doi:DOI 10.1016/j.gca.2012.09.022

    無法下載圖示 校內:2018-08-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE