| 研究生: |
賴泰佑 Lai, Tai-Yu |
|---|---|
| 論文名稱: |
探討PP2A B56γ3調節次單元在抑制癌症上的機制 Study the tumor suppression mechanism of the B56γ3 regulatory subunit of PP2A |
| 指導教授: |
蔣輯武
Chiang, Chi-Wu |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 蛋白質磷酸酶2A型 、B56γ3 、p27KIP1 、p70S6K1 、細胞週期 、細胞內座落位置 、Akt |
| 外文關鍵詞: | PP2A, B56γ3, p27KIP1, p70S6K1, Cell cycle, Subcellular localization, Akt |
| 相關次數: | 點閱:169 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
帶有B56γ3調節次單元的PP2A磷酸水解酶(PP2A-B56γ3)已知可以扮演一個抑癌的角色。我們發現了PP2A-B56γ3會透過以下的機制來抑制癌症:減緩細胞生長、延遲細胞週期進行、增加p27KIP1的穩定表現及使其入核來降低CDK2的活性、及降低p70S6K1的磷酸化及活性來抑制mTOR/p70S6K1 signaling pathway。在NIH3T3細胞重新進入細胞週期時,當有B56γ3大量表現,會有延遲G1/S transition和S phase progression的現象。同時,在serum starvation後加回serum的實驗中,我們發現隨著時間進程,有B56γ3大量表現的細胞,p27KIP1表現量會增加,且p27KIP1在蘇氨酸187位點的磷酸化會有減少的現象。蘇氨酸187位點的磷酸化會導致p27KIP1的穩定性下降,進而減少表現量。同樣的,在HeLa細胞,當B56γ3減少表現的時候,p27KIP1的表現量也會下降。進一步的,我們透過Co-immunoprecipitation、in vitro pull down analysis和in vitro dephosphorylation等實驗方法,發現了B56γ3確實會直接與p27KIP1有交互作用,且p27KIP1確實是PP2A-B56γ3的直接受質。
PP2A-B56γ3除了會增加p27KIP1的穩定性之外,我們也發現當B56γ3大量表現的時候會增加在細胞核中的p27KIP1;反之,當B56γ3減少表現的時候,就會減少細胞核中的p27KIP1。大量表現的B56γ3會減少p27KIP1在蘇氨酸157的磷酸化;反之,減少表現的B56γ3則會增加p27KIP1在蘇氨酸157的磷酸化。已知蘇氨酸157位點的磷酸化會促進p27KIP1坐落在細胞質中,相反的,蘇氨酸157的去磷酸化會促進p27KIP入核,我們以in vitro dephosphorylation的實驗,發現PP2A-B56γ3對於p27KIP在蘇氨酸157的去磷酸化的催化作用是dose-dependent及okadaic acid-sensitive manner。進一步的,我們發現B56γ3並不是透過降低Akt的活性來減少p27KIP1在絲氨酸157的磷酸化及使得p27KIP1進入細胞核中。而在Domain mapping的實驗中,我們發現p27KIP1的N-端及C-端,以及B56γ3的C-端對於兩者之間的交互作用非常重要。而在臨床檢體中,透過Immunohistochemistry的方法,我們發現p27KIP1的表現量和B56γ的表現量無論是在非腫瘤或腫瘤組織中皆呈現正相關。然而,細胞核中p27KIP1的表現量僅在非腫瘤的部分會和B56γ呈現正相關;在腫瘤組織的部分則沒有關係。這樣的結果暗示了在這些tumor的組織中,PP2A- B56γ3對於p27KIP1坐落在細胞核中的調控失衡了。
接著我們證明了PP2A-B56γ3會去磷酸化p70S6K1的蘇氨酸389這個位點,並且同樣不是透過降低Akt的方式來降低p70S6K1的磷酸化。我們發現當大量表現B56γ3確實可以降低p70S6K1在蘇氨酸389的磷酸化;而降低細胞內的B56γ3表現量則可以提升p70S6K1在蘇氨酸389的磷酸化,且這樣的調控能力,不僅是在Steady state下,在處理EGF或LY294002的情況下也一樣。但是,PP2A-B56γ3並不降低mTOR和4EBP1的磷酸化。同樣的,S6是p70S6K1的直接下游受質,其磷酸化也會在大量表現B56γ3時下降,降低表現B56γ3時上升。而且co-immunoprecipitation、in vitro pull down analysis和in vitro dephosphorylation assay等分析結果證明了PP2A-B56γ3磷酸水解酶確實是直接將p70S6K1去磷酸化,且這樣的作用是does-dependent manner及okadaic acid-sensitive manner。總之,我們的研究結果對於PP2A-B56γ3 holoenzyme如何扮演一個抑癌分子的角色提供了新的機制與發現。
PP2A is a heterotrimer protein complex, composed of a structural A subunit, a catalytic C subunit and one variable regulatory B subunits, and accounts for most serine/threonine phosphatase activity in mammalian cells. Previous studies have shown that A and B56 subunits play important roles in tumor suppression. Here, we investigated how B56γ3 delays the G1/S transition and S phase progression. During the time course when NIH3T3 cells were stimulated to re-enter cell cycle, cells with B56γ3 overexpression showed higher protein levels and reduced phosphorylation of p27KIP1 at Thr187 (phospho-Thr187), whose phosphorylation promotes degradation of p27KIP1, compared with cells expressing vector control. Similarly, the levels of p27KIP1 were increased by B56γ3 overexpression, and decreased by B56γ3 knockdown. The co-immunoprecipitation and in vitro pull down assay showed that B56γ3 directly interacts with p27KIP1. In vitro, PP2A-B56γ3 catalyzed dephosphorylation of phospho-Thr187 in a dose-dependent manner. Together, we demonstrate that PP2A-B56γ3 enhances the p27 level to delay the G1/S transition and S phase progression.
In addition to p27KIP1 stability, the subcellular localization of p27KIP1 also determines its role in cancer progression. The cytoplasmic mislocalization of p27KIP1 cooperates with Ras to promote tumor progression. B56γ3 overexpression enhanced nuclear localization of p27KIP1, whereas knockdown of B56γ3 decreased p27KIP1 nuclear localization. B56γ3 overexpression decreased phosphorylation at Thr157 (phospho-Thr157), whose phosphorylation promotes cytoplasmic localization of p27KIP1, whereas B56γ3 knockdown significantly increased the level of phospho-Thr157. In vitro, PP2A-B56γ3 catalyzed dephosphorylation of phospho-Thr157 in a dose-dependent and okadaic acid-sensitive manner. B56γ3 did not increase p27KIP1 nuclear localization by down-regulating the upstream kinase Akt activity and outcompeted a myristoylated constitutively active Akt (Aktca) in regulating Thr157 phosphorylation and subcellular localization of p27KIP1. In addition, results of interaction domain mapping revealed that both the N-terminal and C-terminal domains of p27 and a domain at the C-terminus of B56γ3 are required for interaction between p27 and B56γ3. Furthermore, we demonstrated that p27KIP1 levels are positively correlated with B56γ levels in both non-tumor and tumor parts of a set of human colon tissue specimens. However, positive correlation between nuclear p27KIP1 levels and B56γ levels was found only in the non-tumor parts, but not in tumor parts of these tissues, implicating a dysregulation in PP2A-B56γ3-regulated p27KIP1 nuclear localization in these tumor tissues. Together, we demonstrate that PP2A-B56γ3 suppresses tumor progression through enhancing p27KIP1 stability and nuclear localization of p27KIP1by catalyzing the dephosphorylation of p27KIP1 at Thr187 and Thr157, respectively.
Previous reports have implicated that PP2A-B56γ holoenzymes participate in regulating cellular metabolism through down-regulating p70S6K1 activity. Thus, we investigated whether PP2A-B56γ3 can dephosphorylate p70S6K1. We found that overexpression of B56γ3 reduced p70S6K phosphorylation at Thr389, whereas knockdown of B56γ3 resulted in increased p70S6K phosphorylation at Thr389 in steady state, EGF or LY294002 treatment. As expected, the phosphorylation of p70S6K1 downstream substrate, S6, was decreased by B56γ3 overexpression, but increased by B56γ3 knockdown. The cell size of cells with B56γ3 overexpression was reduced compared to that in cells with vector control, whereas, the cell size of cells expressing shB56γ3 was increased compared to that in cells expressing shLuc. Results of co-immunoprecipitation, in vitro pull down assay, and in vitro dephosphorylation assay demonstrated that PP2A-B56γ3 directly catalyzed p70S6K1 dephosphorylation in a dose-dependent and okadaic acid-sensitive manner. In contrast, the phospho-Ser2448 of mTOR and phospho-S65 of 4EBP1 were not reduced by PP2A-B56γ3.
Altogether, our study provides novel mechanisms by which the PP2A-B56γ3 holoenzyme plays its tumor suppressor role.
References
1. Ceulemans H and Bollen M. Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiol Rev. 2004; 84:1-39.
2. Zolnierowicz S and Bollen M. Protein phosphorylation and protein phosphatases. De Panne, Belgium, September 19-24, 1999. EMBO J. 2000; 19:483-488.
3. Van Kanegan MJ, Adams DG, Wadzinski BE and Strack S. Distinct protein phosphatase 2A heterotrimers modulate growth factor signaling to extracellular signal-regulated kinases and Akt. J Biol Chem. 2005; 280:36029-36036.
4. Janssens V and Goris J. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J. 2001; 353:417-439.
5. Healy AM, Zolnierowicz S, Stapleton AE, Goebl M, DePaoli-Roach AA and Pringle JR. CDC55, a Saccharomyces cerevisiae gene involved in cellular morphogenesis: identification, characterization, and homology to the B subunit of mammalian type 2A protein phosphatase. Mol Cell Biol. 1991; 11:5767-5780.
6. McCright B and Virshup DM. Identification of a new family of protein phosphatase 2A regulatory subunits. J Biol Chem. 1995; 270:26123-26128.
7. Csortos C, Zolnierowicz S, Bako E, Durbin SD and DePaoli-Roach AA. High complexity in the expression of the B' subunit of protein phosphatase 2A0. Evidence for the existence of at least seven novel isoforms. J Biol Chem. 1996; 271:2578-2588.
8. Tanabe O, Nagase T, Murakami T, Nozaki H, Usui H, Nishito Y, Hayashi H, Kagamiyama H and Takeda M. Molecular cloning of a 74-kDa regulatory subunit (B" or delta) of human protein phosphatase 2A. FEBS Lett. 1996; 379:107-111.
9. Moreno CS, Park S, Nelson K, Ashby D, Hubalek F, Lane WS and Pallas DC. WD40 repeat proteins striatin and S/G(2) nuclear autoantigen are members of a novel family of calmodulin-binding proteins that associate with protein phosphatase 2A. J Biol Chem. 2000; 275:5257-5263.
10. Jiang W and Hallberg RL. Isolation and characterization of par1(+) and par2(+): two Schizosaccharomyces pombe genes encoding B' subunits of protein phosphatase 2A. Genetics. 2000; 154:1025-1038.
11. Gentry MS and Hallberg RL. Localization of Saccharomyces cerevisiae protein phosphatase 2A subunits throughout mitotic cell cycle. Mol Biol Cell. 2002; 13:3477-3492.
12. Dagda RK, Zaucha JA, Wadzinski BE and Strack S. A developmentally regulated, neuron-specific splice variant of the variable subunit Bbeta targets protein phosphatase 2A to mitochondria and modulates apoptosis. J Biol Chem. 2003; 278:24976-24985.
13. McCright B, Rivers AM, Audlin S and Virshup DM. The B56 family of protein phosphatase 2A (PP2A) regulatory subunits encodes differentiation-induced phosphoproteins that target PP2A to both nucleus and cytoplasm. J Biol Chem. 1996; 271:22081-22089.
14. Strack S, Zaucha JA, Ebner FF, Colbran RJ and Wadzinski BE. Brain protein phosphatase 2A: developmental regulation and distinct cellular and subcellular localization by B subunits. J Comp Neurol. 1998; 392:515-527.
15. Mo ST, Chiang SJ, Lai TY, Cheng YL, Chung CE, Kuo SC, Reece KM, Chen YC, Chang NS, Wadzinski BE and Chiang CW. Visualization of subunit interactions and ternary complexes of protein phosphatase 2A in mammalian cells. PLoS One. 2014; 9:e116074.
16. Bastos RN, Cundell MJ and Barr FA. KIF4A and PP2A-B56 form a spatially restricted feedback loop opposing Aurora B at the anaphase central spindle. J Cell Biol. 2014; 207:683-693.
17. Kuo YC, Huang KY, Yang CH, Yang YS, Lee WY and Chiang CW. Regulation of phosphorylation of Thr-308 of Akt, cell proliferation, and survival by the B55alpha regulatory subunit targeting of the protein phosphatase 2A holoenzyme to Akt. J Biol Chem. 2008; 283:1882-1892.
18. Eichhorn PJ, Creyghton MP and Bernards R. Protein phosphatase 2A regulatory subunits and cancer. Biochim Biophys Acta. 2009; 1795:1-15.
19. Arnold HK and Sears RC. Protein phosphatase 2A regulatory subunit B56alpha associates with c-myc and negatively regulates c-myc accumulation. Mol Cell Biol. 2006; 26:2832-2844.
20. Li HH, Cai X, Shouse GP, Piluso LG and Liu X. A specific PP2A regulatory subunit, B56gamma, mediates DNA damage-induced dephosphorylation of p53 at Thr55. EMBO J. 2007; 26:402-411.
21. Janssens V, Longin S and Goris J. PP2A holoenzyme assembly: in cauda venenum (the sting is in the tail). Trends Biochem Sci. 2008; 33:113-121.
22. Shouse GP, Nobumori Y, Panowicz MJ and Liu X. ATM-mediated phosphorylation activates the tumor-suppressive function of B56gamma-PP2A. Oncogene. 2011; 30:3755-3765.
23. Kirchhefer U, Heinick A, Konig S, Kristensen T, Muller FU, Seidl MD and Boknik P. Protein phosphatase 2A is regulated by protein kinase Calpha (PKCalpha)-dependent phosphorylation of its targeting subunit B56alpha at Ser41. J Biol Chem. 2014; 289:163-176.
24. Kong M, Ditsworth D, Lindsten T and Thompson CB. Alpha4 is an essential regulator of PP2A phosphatase activity. Mol Cell. 2009; 36:51-60.
25. Aranda-Orgilles B, Aigner J, Kunath M, Lurz R, Schneider R and Schweiger S. Active transport of the ubiquitin ligase MID1 along the microtubules is regulated by protein phosphatase 2A. PLoS One. 2008; 3:e3507.
26. McConnell JL, Gomez RJ, McCorvey LR, Law BK and Wadzinski BE. Identification of a PP2A-interacting protein that functions as a negative regulator of phosphatase activity in the ATM/ATR signaling pathway. Oncogene. 2007; 26:6021-6030.
27. Smetana JH and Zanchin NI. Interaction analysis of the heterotrimer formed by the phosphatase 2A catalytic subunit, alpha4 and the mammalian ortholog of yeast Tip41 (TIPRL). FEBS J. 2007; 274:5891-5904.
28. Chung CE and Chiang CW. (2014). Investigate the cellular functions of type-2A-interacting protein (TIP). National Cheng Kung University, Taiwan).
29. Nakamura K, Koda T, Kakinuma M, Matsuzawa S, Kitamura K, Mizuno Y and Kikuchi K. Cell cycle dependent gene expressions and activities of protein phosphatases PP1 and PP2A in mouse NIH3T3 fibroblasts. Biochem Biophys Res Commun. 1992; 187:507-514.
30. Lechward K, Awotunde OS, Swiatek W and Muszynska G. Protein phosphatase 2A: variety of forms and diversity of functions. Acta Biochim Pol. 2001; 48:921-933.
31. Schonthal AH. Role of serine/threonine protein phosphatase 2A in cancer. Cancer Lett. 2001; 170:1-13.
32. Lin XH, Walter J, Scheidtmann K, Ohst K, Newport J and Walter G. Protein phosphatase 2A is required for the initiation of chromosomal DNA replication. Proc Natl Acad Sci U S A. 1998; 95:14693-14698.
33. Uh S, Van Linden A and Riches DW. Phosphorylation of 130- and 95-kDa substrates associated with tumor necrosis factor-alpha receptor CD120a (p55). J Biol Chem. 2000; 275:793-800.
34. Cicchillitti L, Fasanaro P, Biglioli P, Capogrossi MC and Martelli F. Oxidative stress induces protein phosphatase 2A-dependent dephosphorylation of the pocket proteins pRb, p107, and p130. J Biol Chem. 2003; 278:19509-19517.
35. Magenta A, Fasanaro P, Romani S, Di Stefano V, Capogrossi MC and Martelli F. Protein phosphatase 2A subunit PR70 interacts with pRb and mediates its dephosphorylation. Mol Cell Biol. 2008; 28:873-882.
36. Millward TA, Zolnierowicz S and Hemmings BA. Regulation of protein kinase cascades by protein phosphatase 2A. Trends Biochem Sci. 1999; 24:186-191.
37. Perdiguero E and Nebreda AR. Regulation of Cdc25C activity during the meiotic G2/M transition. Cell Cycle. 2004; 3:733-737.
38. Hancock CN, Dangi S and Shapiro P. Protein phosphatase 2A activity associated with Golgi membranes during the G2/M phase may regulate phosphorylation of ERK2. J Biol Chem. 2005; 280:11590-11598.
39. Lin FC and Arndt KT. The role of Saccharomyces cerevisiae type 2A phosphatase in the actin cytoskeleton and in entry into mitosis. EMBO J. 1995; 14:2745-2759.
40. Jiang Y. Regulation of the cell cycle by protein phosphatase 2A in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 2006; 70:440-449.
41. Tang Z, Shu H, Qi W, Mahmood NA, Mumby MC and Yu H. PP2A is required for centromeric localization of Sgo1 and proper chromosome segregation. Dev Cell. 2006; 10:575-585.
42. Yamashita K, Yasuda H, Pines J, Yasumoto K, Nishitani H, Ohtsubo M, Hunter T, Sugimura T and Nishimoto T. Okadaic acid, a potent inhibitor of type 1 and type 2A protein phosphatases, activates cdc2/H1 kinase and transiently induces a premature mitosis-like state in BHK21 cells. EMBO J. 1990; 9:4331-4338.
43. Picard A, Labbe JC, Barakat H, Cavadore JC and Doree M. Okadaic acid mimics a nuclear component required for cyclin B-cdc2 kinase microinjection to drive starfish oocytes into M phase. J Cell Biol. 1991; 115:337-344.
44. Xu P, Raetz EA, Kitagawa M, Virshup DM and Lee SH. BUBR1 recruits PP2A via the B56 family of targeting subunits to promote chromosome congression. Biol Open. 2013; 2:479-486.
45. Xu P, Virshup DM and Lee SH. B56-PP2A regulates motor dynamics for mitotic chromosome alignment. J Cell Sci. 2014; 127:4567-4573.
46. Espert A, Uluocak P, Bastos RN, Mangat D, Graab P and Gruneberg U. PP2A-B56 opposes Mps1 phosphorylation of Knl1 and thereby promotes spindle assembly checkpoint silencing. J Cell Biol. 2014; 206:833-842.
47. Ito A, Kataoka TR, Watanabe M, Nishiyama K, Mazaki Y, Sabe H, Kitamura Y and Nojima H. A truncated isoform of the PP2A B56 subunit promotes cell motility through paxillin phosphorylation. EMBO J. 2000; 19:562-571.
48. Giordano AaGR. Cell cycle control and dysregulation prootocals : cyclins, cyclin-dependent kinase, and other factors. 2004:185.
49. Gutkind JS. Signaling networks and cell cycle control : the molecular basis of cancer and other diseases. Cancer drug discovery and development. 2000:578.
50. Lai TY, Yen CJ, Tsai HW, Yang YS, Hong WF and Chiang CW. The B56gamma3 regulatory subunit-containing protein phosphatase 2A outcompetes Akt to regulate p27KIP1 subcellular localization by selectively dephosphorylating phospho-Thr157 of p27KIP1. Oncotarget. 2015.
51. Lee TY, Lai TY, Lin SC, Wu CW, Ni IF, Yang YS, Hung LY, Law BK and Chiang CW. The B56gamma3 regulatory subunit of protein phosphatase 2A (PP2A) regulates S phase-specific nuclear accumulation of PP2A and the G1 to S transition. J Biol Chem. 2010; 285:21567-21580.
52. Suganuma M, Fujiki H, Suguri H, Yoshizawa S, Hirota M, Nakayasu M, Ojika M, Wakamatsu K, Yamada K and Sugimura T. Okadaic acid: an additional non-phorbol-12-tetradecanoate-13-acetate-type tumor promoter. Proc Natl Acad Sci U S A. 1988; 85:1768-1771.
53. Suganuma M, Fujiki H, Furuya-Suguri H, Yoshizawa S, Yasumoto S, Kato Y, Fusetani N and Sugimura T. Calyculin A, an inhibitor of protein phosphatases, a potent tumor promoter on CD-1 mouse skin. Cancer Res. 1990; 50:3521-3525.
54. Fujiki H and Suganuma M. Tumor promotion by inhibitors of protein phosphatases 1 and 2A: the okadaic acid class of compounds. Adv Cancer Res. 1993; 61:143-194.
55. Chen W, Possemato R, Campbell KT, Plattner CA, Pallas DC and Hahn WC. Identification of specific PP2A complexes involved in human cell transformation. Cancer Cell. 2004; 5:127-136.
56. Francia G, Mitchell SD, Moss SE, Hanby AM, Marshall JF and Hart IR. Identification by differential display of annexin-VI, a gene differentially expressed during melanoma progression. Cancer Res. 1996; 56:3855-3858.
57. Wang SS, Esplin ED, Li JL, Huang L, Gazdar A, Minna J and Evans GA. Alterations of the PPP2R1B gene in human lung and colon cancer. Science. 1998; 282:284-287.
58. Calin GA, di Iasio MG, Caprini E, Vorechovsky I, Natali PG, Sozzi G, Croce CM, Barbanti-Brodano G, Russo G and Negrini M. Low frequency of alterations of the alpha (PPP2R1A) and beta (PPP2R1B) isoforms of the subunit A of the serine-threonine phosphatase 2A in human neoplasms. Oncogene. 2000; 19:1191-1195.
59. Takagi Y, Futamura M, Yamaguchi K, Aoki S, Takahashi T and Saji S. Alterations of the PPP2R1B gene located at 11q23 in human colorectal cancers. Gut. 2000; 47:268-271.
60. Deichmann M, Polychronidis M, Wacker J, Thome M and Naher H. The protein phosphatase 2A subunit Bgamma gene is identified to be differentially expressed in malignant melanomas by subtractive suppression hybridization. Melanoma Res. 2001; 11:577-585.
61. Ruediger R, Pham HT and Walter G. Disruption of protein phosphatase 2A subunit interaction in human cancers with mutations in the A alpha subunit gene. Oncogene. 2001; 20:10-15.
62. Tamaki M, Goi T, Hirono Y, Katayama K and Yamaguchi A. PPP2R1B gene alterations inhibit interaction of PP2A-Abeta and PP2A-C proteins in colorectal cancers. Oncol Rep. 2004; 11:655-659.
63. Arroyo JD and Hahn WC. Involvement of PP2A in viral and cellular transformation. Oncogene. 2005; 24:7746-7755.
64. Sontag E. Protein phosphatase 2A: the Trojan Horse of cellular signaling. Cell Signal. 2001; 13:7-16.
65. Janssens V, Goris J and Van Hoof C. PP2A: the expected tumor suppressor. Curr Opin Genet Dev. 2005; 15:34-41.
66. Westermarck J and Hahn WC. Multiple pathways regulated by the tumor suppressor PP2A in transformation. Trends Mol Med. 2008; 14:152-160.
67. Hahn WC, Dessain SK, Brooks MW, King JE, Elenbaas B, Sabatini DM, DeCaprio JA and Weinberg RA. Enumeration of the simian virus 40 early region elements necessary for human cell transformation. Mol Cell Biol. 2002; 22:2111-2123.
68. Pallas DC, Shahrik LK, Martin BL, Jaspers S, Miller TB, Brautigan DL and Roberts TM. Polyoma small and middle T antigens and SV40 small t antigen form stable complexes with protein phosphatase 2A. Cell. 1990; 60:167-176.
69. Sontag E, Fedorov S, Kamibayashi C, Robbins D, Cobb M and Mumby M. The interaction of SV40 small tumor antigen with protein phosphatase 2A stimulates the map kinase pathway and induces cell proliferation. Cell. 1993; 75:887-897.
70. Mumby M. Regulation by tumour antigens defines a role for PP2A in signal transduction. Semin Cancer Biol. 1995; 6:229-237.
71. Chen Y, Xu Y, Bao Q, Xing Y, Li Z, Lin Z, Stock JB, Jeffrey PD and Shi Y. Structural and biochemical insights into the regulation of protein phosphatase 2A by small t antigen of SV40. Nat Struct Mol Biol. 2007; 14:527-534.
72. Cho US, Morrone S, Sablina AA, Arroyo JD, Hahn WC and Xu W. Structural basis of PP2A inhibition by small t antigen. PLoS Biol. 2007; 5:e202.
73. Moreno CS, Ramachandran S, Ashby DG, Laycock N, Plattner CA, Chen W, Hahn WC and Pallas DC. Signaling and transcriptional changes critical for transformation of human cells by simian virus 40 small tumor antigen or protein phosphatase 2A B56gamma knockdown. Cancer Res. 2004; 64:6978-6988.
74. Van Hoof C and Goris J. PP2A fulfills its promises as tumor suppressor: which subunits are important? Cancer Cell. 2004; 5:105-106.
75. Ruediger R, Pham HT and Walter G. Alterations in protein phosphatase 2A subunit interaction in human carcinomas of the lung and colon with mutations in the A beta subunit gene. Oncogene. 2001; 20:1892-1899.
76. Chen W, Arroyo JD, Timmons JC, Possemato R and Hahn WC. Cancer-associated PP2A Aalpha subunits induce functional haploinsufficiency and tumorigenicity. Cancer Res. 2005; 65:8183-8192.
77. Silverstein AM, Barrow CA, Davis AJ and Mumby MC. Actions of PP2A on the MAP kinase pathway and apoptosis are mediated by distinct regulatory subunits. Proc Natl Acad Sci U S A. 2002; 99:4221-4226.
78. Margolis SS, Perry JA, Forester CM, Nutt LK, Guo Y, Jardim MJ, Thomenius MJ, Freel CD, Darbandi R, Ahn JH, Arroyo JD, Wang XF, Shenolikar S, Nairn AC, Dunphy WG, Hahn WC, et al. Role for the PP2A/B56delta phosphatase in regulating 14-3-3 release from Cdc25 to control mitosis. Cell. 2006; 127:759-773.
79. Shouse GP, Nobumori Y and Liu X. A B56gamma mutation in lung cancer disrupts the p53-dependent tumor-suppressor function of protein phosphatase 2A. Oncogene. 2010; 29:3933-3941.
80. Muneer S, Ramalingam V, Wyatt R, Schultz RA, Minna JD and Kamibayashi C. Genomic organization and mapping of the gene encoding the PP2A B56gamma regulatory subunit. Genomics. 2002; 79:344-348.
81. Zheng H, Chen Y, Chen S, Niu Y, Yang L, Li B, Lu Y, Geng S, Du X and Li Y. Expression and distribution of PPP2R5C gene in leukemia. J Hematol Oncol. 2011; 4:21.
82. McCright B, Brothman AR and Virshup DM. Assignment of human protein phosphatase 2A regulatory subunit genes b56alpha, b56beta, b56gamma, b56delta, and b56epsilon (PPP2R5A-PPP2R5E), highly expressed in muscle and brain, to chromosome regions 1q41, 11q12, 3p21, 6p21.1, and 7p11.2 --> p12. Genomics. 1996; 36:168-170.
83. Varadkar P, Despres D, Kraman M, Lozier J, Phadke A, Nagaraju K and McCright B. The protein phosphatase 2A B56gamma regulatory subunit is required for heart development. Dev Dyn. 2014; 243:778-790.
84. Kirchhefer U, Brekle C, Eskandar J, Isensee G, Kucerova D, Muller FU, Pinet F, Schulte JS, Seidl MD and Boknik P. Cardiac function is regulated by B56alpha-mediated targeting of protein phosphatase 2A (PP2A) to contractile relevant substrates. J Biol Chem. 2014; 289:33862-33873.
85. Ito A, Koma Y, Watabe K, Nagano T, Endo Y, Nojima H and Kitamura Y. A truncated isoform of the protein phosphatase 2A B56gamma regulatory subunit may promote genetic instability and cause tumor progression. Am J Pathol. 2003; 162:81-91.
86. Gotz J, Probst A, Ehler E, Hemmings B and Kues W. Delayed embryonic lethality in mice lacking protein phosphatase 2A catalytic subunit Calpha. Proc Natl Acad Sci U S A. 1998; 95:12370-12375.
87. Larrea MD, Wander SA and Slingerland JM. p27 as Jekyll and Hyde: regulation of cell cycle and cell motility. Cell Cycle. 2009; 8:3455-3461.
88. Sherr CJ and Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999; 13:1501-1512.
89. Pagano M, Tam SW, Theodoras AM, Beer-Romero P, Del Sal G, Chau V, Yew PR, Draetta GF and Rolfe M. Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science. 1995; 269:682-685.
90. Nakayama KI and Nakayama K. Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer. 2006; 6:369-381.
91. Kossatz U, Vervoorts J, Nickeleit I, Sundberg HA, Arthur JS, Manns MP and Malek NP. C-terminal phosphorylation controls the stability and function of p27kip1. EMBO J. 2006; 25:5159-5170.
92. Ishida N, Kitagawa M, Hatakeyama S and Nakayama K. Phosphorylation at serine 10, a major phosphorylation site of p27(Kip1), increases its protein stability. J Biol Chem. 2000; 275:25146-25154.
93. Besson A, Gurian-West M, Chen X, Kelly-Spratt KS, Kemp CJ and Roberts JM. A pathway in quiescent cells that controls p27Kip1 stability, subcellular localization, and tumor suppression. Genes Dev. 2006; 20:47-64.
94. Rodier G, Montagnoli A, Di Marcotullio L, Coulombe P, Draetta GF, Pagano M and Meloche S. p27 cytoplasmic localization is regulated by phosphorylation on Ser10 and is not a prerequisite for its proteolysis. EMBO J. 2001; 20:6672-6682.
95. Vervoorts J and Luscher B. Post-translational regulation of the tumor suppressor p27(KIP1). Cell Mol Life Sci. 2008; 65:3255-3264.
96. Sekimoto T, Fukumoto M and Yoneda Y. 14-3-3 suppresses the nuclear localization of threonine 157-phosphorylated p27(Kip1). EMBO J. 2004; 23:1934-1942.
97. Shin I, Rotty J, Wu FY and Arteaga CL. Phosphorylation of p27Kip1 at Thr-157 interferes with its association with importin alpha during G1 and prevents nuclear re-entry. J Biol Chem. 2005; 280:6055-6063.
98. Chu IM, Hengst L and Slingerland JM. The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nat Rev Cancer. 2008; 8:253-267.
99. Spirin KS, Simpson JF, Takeuchi S, Kawamata N, Miller CW and Koeffler HP. p27/Kip1 mutation found in breast cancer. Cancer Res. 1996; 56:2400-2404.
100. MR DEA, Perez-Sayans M, Suarez-Penaranda JM, Somoza-Martin JM and Garcia-Garcia A. p27 expression as a prognostic marker for squamous cell carcinoma of the head and neck. Oncol Lett. 2015; 10:2675-2682.
101. Serres MP, Zlotek-Zlotkiewicz E, Concha C, Gurian-West M, Daburon V, Roberts JM and Besson A. Cytoplasmic p27 is oncogenic and cooperates with Ras both in vivo and in vitro. Oncogene. 2011; 30:2846-2858.
102. Do SI, Kim DH, Yang JH, Pyo JS, Kim K, Lee H, Do IG, Kim DH, Chae SW and Sohn JH. Decreased expression of p27 is associated with malignant transformation and extrathyroidal extension in papillary thyroid carcinoma. Tumour Biol. 2015.
103. McCampbell AS, Mittelstadt ML, Dere R, Kim S, Zhou L, Djordjevic B, Soliman PT, Zhang Q, Wei C, Hursting SD, Lu KH, Broaddus RR and Walker CL. Loss of p27 Associated with Risk for Endometrial Carcinoma Arising in the Setting of Obesity. Curr Mol Med. 2016; 16:252-265.
104. Denicourt C, Saenz CC, Datnow B, Cui XS and Dowdy SF. Relocalized p27Kip1 tumor suppressor functions as a cytoplasmic metastatic oncogene in melanoma. Cancer Res. 2007; 67:9238-9243.
105. Vallonthaiel AG, Singh MK, Dinda AK, Kakkar A, Thakar A and Das SN. Prognostic significance of cytoplasmic p27 in oral squamous cell carcinoma. J Oral Pathol Med. 2016.
106. Wu FY, Wang SE, Sanders ME, Shin I, Rojo F, Baselga J and Arteaga CL. Reduction of cytosolic p27(Kip1) inhibits cancer cell motility, survival, and tumorigenicity. Cancer Res. 2006; 66:2162-2172.
107. Xiea Y and Wangb R. Pttg1 Promotes Growth of Breast Cancer through P27 Nuclear Exclusion. Cell Physiol Biochem. 2016; 38:393-400.
108. Miao X, Xu X, Wu Y, Zhu X, Chen X, Li C, Lu X, Chen Y, Liu Y, Huang J, Wang Y and He S. Overexpression of TRIP6 promotes tumor proliferation and reverses cell adhesion-mediated drug resistance (CAM-DR) via regulating nuclear p27 expression in non-Hodgkin's lymphoma. Tumour Biol. 2015.
109. Park CG, Sohn YW, Kim EJ, Kim SH, Kim SC and Kim H. LIM domain only 2 induces glioma invasion via cytosolic p27. Tumour Biol. 2015.
110. Lee-Fruman KK, Kuo CJ, Lippincott J, Terada N and Blenis J. Characterization of S6K2, a novel kinase homologous to S6K1. Oncogene. 1999; 18:5108-5114.
111. Gout I, Minami T, Hara K, Tsujishita Y, Filonenko V, Waterfield MD and Yonezawa K. Molecular cloning and characterization of a novel p70 S6 kinase, p70 S6 kinase beta containing a proline-rich region. J Biol Chem. 1998; 273:30061-30064.
112. Koh H, Jee K, Lee B, Kim J, Kim D, Yun YH, Kim JW, Choi HS and Chung J. Cloning and characterization of a nuclear S6 kinase, S6 kinase-related kinase (SRK); a novel nuclear target of Akt. Oncogene. 1999; 18:5115-5119.
113. Magnuson B, Ekim B and Fingar DC. Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochem J. 2012; 441:1-21.
114. Ip CK and Wong AS. Exploiting p70 S6 kinase as a target for ovarian cancer. Expert Opin Ther Targets. 2012; 16:619-630.
115. Jastrzebski K, Hannan KM, Tchoubrieva EB, Hannan RD and Pearson RB. Coordinate regulation of ribosome biogenesis and function by the ribosomal protein S6 kinase, a key mediator of mTOR function. Growth Factors. 2007; 25:209-226.
116. Pullen N, Dennis PB, Andjelkovic M, Dufner A, Kozma SC, Hemmings BA and Thomas G. Phosphorylation and activation of p70s6k by PDK1. Science. 1998; 279:707-710.
117. Isotani S, Hara K, Tokunaga C, Inoue H, Avruch J and Yonezawa K. Immunopurified mammalian target of rapamycin phosphorylates and activates p70 S6 kinase alpha in vitro. J Biol Chem. 1999; 274:34493-34498.
118. Weng QP, Kozlowski M, Belham C, Zhang A, Comb MJ and Avruch J. Regulation of the p70 S6 kinase by phosphorylation in vivo. Analysis using site-specific anti-phosphopeptide antibodies. J Biol Chem. 1998; 273:16621-16629.
119. Moser BA, Dennis PB, Pullen N, Pearson RB, Williamson NA, Wettenhall RE, Kozma SC and Thomas G. Dual requirement for a newly identified phosphorylation site in p70s6k. Mol Cell Biol. 1997; 17:5648-5655.
120. Duvel K and Broach JR. The role of phosphatases in TOR signaling in yeast. Curr Top Microbiol Immunol. 2004; 279:19-38.
121. Peterson RT, Desai BN, Hardwick JS and Schreiber SL. Protein phosphatase 2A interacts with the 70-kDa S6 kinase and is activated by inhibition of FKBP12-rapamycinassociated protein. Proc Natl Acad Sci U S A. 1999; 96:4438-4442.
122. Westphal RS, Coffee RL, Jr., Marotta A, Pelech SL and Wadzinski BE. Identification of kinase-phosphatase signaling modules composed of p70 S6 kinase-protein phosphatase 2A (PP2A) and p21-activated kinase-PP2A. J Biol Chem. 1999; 274:687-692.
123. Hahn K, Miranda M, Francis VA, Vendrell J, Zorzano A and Teleman AA. PP2A regulatory subunit PP2A-B' counteracts S6K phosphorylation. Cell Metab. 2010; 11:438-444.
124. Tehrani MA, Mumby MC and Kamibayashi C. Identification of a novel protein phosphatase 2A regulatory subunit highly expressed in muscle. J Biol Chem. 1996; 271:5164-5170.
125. Kohn AD, Takeuchi F and Roth RA. Akt, a pleckstrin homology domain containing kinase, is activated primarily by phosphorylation. J Biol Chem. 1996; 271:21920-21926.
126. Greider C, Chattopadhyay A, Parkhurst C and Yang E. BCL-x(L) and BCL2 delay Myc-induced cell cycle entry through elevation of p27 and inhibition of G1 cyclin-dependent kinases. Oncogene. 2002; 21:7765-7775.
127. Yang ES and Burnstein KL. Vitamin D inhibits G1 to S progression in LNCaP prostate cancer cells through p27Kip1 stabilization and Cdk2 mislocalization to the cytoplasm. J Biol Chem. 2003; 278:46862-46868.
128. Chiang CW, Harris G, Ellig C, Masters SC, Subramanian R, Shenolikar S, Wadzinski BE and Yang E. Protein phosphatase 2A activates the proapoptotic function of BAD in interleukin- 3-dependent lymphoid cells by a mechanism requiring 14-3-3 dissociation. Blood. 2001; 97:1289-1297.
129. Chou KH and Chiang CW. Investigating the Regulation of Cell Motility by the B56γ3 Regulatory Subunit of PP2A. Unpublished Master's Thesis: National Cheng Kung University, Taiwan (2011).
130. Rocher G, Letourneux C, Lenormand P and Porteu F. Inhibition of B56-containing protein phosphatase 2As by the early response gene IEX-1 leads to control of Akt activity. J Biol Chem. 2007; 282:5468-5477.
131. Shin I, Yakes FM, Rojo F, Shin NY, Bakin AV, Baselga J and Arteaga CL. PKB/Akt mediates cell-cycle progression by phosphorylation of p27(Kip1) at threonine 157 and modulation of its cellular localization. Nat Med. 2002; 8:1145-1152.
132. Cheng JD, Werness BA, Babb JS and Meropol NJ. Paradoxical correlations of cyclin-dependent kinase inhibitors p21waf1/cip1 and p27kip1 in metastatic colorectal carcinoma. Clinical cancer research : an official journal of the American Association for Cancer Research. 1999; 5:1057-1062.
133. Ciaparrone M, Yamamoto H, Yao Y, Sgambato A, Cattoretti G, Tomita N, Monden T, Rotterdam H and Weinstein IB. Localization and expression of p27KIP1 in multistage colorectal carcinogenesis. Cancer Res. 1998; 58:114-122.
134. Dijkers PF, Medema RH, Pals C, Banerji L, Thomas NS, Lam EW, Burgering BM, Raaijmakers JA, Lammers JW, Koenderman L and Coffer PJ. Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcriptional regulation of p27(KIP1). Mol Cell Biol. 2000; 20:9138-9148.
135. Medema RH, Kops GJ, Bos JL and Burgering BM. AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature. 2000; 404:782-787.
136. Viglietto G, Motti ML, Bruni P, Melillo RM, D'Alessio A, Califano D, Vinci F, Chiappetta G, Tsichlis P, Bellacosa A, Fusco A and Santoro M. Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27(Kip1) by PKB/Akt-mediated phosphorylation in breast cancer. Nat Med. 2002; 8:1136-1144.
137. Motti ML, De Marco C, Califano D, Fusco A and Viglietto G. Akt-dependent T198 phosphorylation of cyclin-dependent kinase inhibitor p27kip1 in breast cancer. Cell Cycle. 2004; 3:1074-1080.
138. Hong F, Larrea MD, Doughty C, Kwiatkowski DJ, Squillace R and Slingerland JM. mTOR-raptor binds and activates SGK1 to regulate p27 phosphorylation. Mol Cell. 2008; 30:701-711.
139. Larrea MD, Hong F, Wander SA, da Silva TG, Helfman D, Lannigan D, Smith JA and Slingerland JM. RSK1 drives p27Kip1 phosphorylation at T198 to promote RhoA inhibition and increase cell motility. Proc Natl Acad Sci U S A. 2009; 106:9268-9273.
140. Fujita N, Sato S, Katayama K and Tsuruo T. Akt-dependent phosphorylation of p27Kip1 promotes binding to 14-3-3 and cytoplasmic localization. J Biol Chem. 2002; 277:28706-28713.
141. Esplin ED, Ramos P, Martinez B, Tomlinson GE, Mumby MC and Evans GA. The glycine 90 to aspartate alteration in the Abeta subunit of PP2A (PPP2R1B) associates with breast cancer and causes a deficit in protein function. Genes, chromosomes & cancer. 2006; 45:182-190.
142. Nobumori Y, Shouse GP, Wu Y, Lee KJ, Shen B and Liu X. B56gamma tumor-associated mutations provide new mechanisms for B56gamma-PP2A tumor suppressor activity. Mol Cancer Res. 2013; 11:995-1003.
143. Ciccone M, Calin GA and Perrotti D. From the Biology of PP2A to the PADs for Therapy of Hematologic Malignancies. Front Oncol. 2015; 5:21.
144. Cristobal I, Blanco FJ, Garcia-Orti L, Marcotegui N, Vicente C, Rifon J, Novo FJ, Bandres E, Calasanz MJ, Bernabeu C and Odero MD. SETBP1 overexpression is a novel leukemogenic mechanism that predicts adverse outcome in elderly patients with acute myeloid leukemia. Blood. 2010; 115:615-625.
145. Junttila MR, Puustinen P, Niemela M, Ahola R, Arnold H, Bottzauw T, Ala-aho R, Nielsen C, Ivaska J, Taya Y, Lu SL, Lin S, Chan EK, Wang XJ, Grenman R, Kast J, et al. CIP2A inhibits PP2A in human malignancies. Cell. 2007; 130:51-62.
146. Laine A, Sihto H, Come C, Rosenfeldt MT, Zwolinska A, Niemela M, Khanna A, Chan EK, Kahari VM, Kellokumpu-Lehtinen PL, Sansom OJ, Evan GI, Junttila MR, Ryan KM, Marine JC, Joensuu H, et al. Senescence sensitivity of breast cancer cells is defined by positive feedback loop between CIP2A and E2F1. Cancer Discov. 2013; 3:182-197.
147. Chiang CW, Kanies C, Kim KW, Fang WB, Parkhurst C, Xie M, Henry T and Yang E. Protein phosphatase 2A dephosphorylation of phosphoserine 112 plays the gatekeeper role for BAD-mediated apoptosis. Mol Cell Biol. 2003; 23:6350-6362.
148. Shapira M, Ben-Izhak O, Linn S, Futerman B, Minkov I and Hershko DD. The prognostic impact of the ubiquitin ligase subunits Skp2 and Cks1 in colorectal carcinoma. Cancer. 2005; 103:1336-1346.
149. Sarli L, Bottarelli L, Azzoni C, Campanini N, Di Cola G, Barilli AL, Marchesi F, Mazzeo A, Salvemini C, Morari S, Di Mauro D, Donadei E, Necchi F, Roncoroni L and Bordi C. Loss of p27 expression and microsatellite instability in sporadic colorectal cancer. Surgical oncology. 2006; 15:97-106.
150. Watson NF, Durrant LG, Scholefield JH, Madjd Z, Scrimgeour D, Spendlove I, Ellis IO and Patel PM. Cytoplasmic expression of p27(kip1) is associated with a favourable prognosis in colorectal cancer patients. World journal of gastroenterology : WJG. 2006; 12:6299-6304.
151. Noguchi T, Kikuchi R, Ono K, Takeno S, Moriyama H and Uchida Y. Prognostic significance of p27/kip1 and apoptosis in patients with colorectal carcinoma. Oncol Rep. 2003; 10:827-831.
152. Yan L, Mieulet V, Burgess D, Findlay GM, Sully K, Procter J, Goris J, Janssens V, Morrice NA and Lamb RF. PP2A T61 epsilon is an inhibitor of MAP4K3 in nutrient signaling to mTOR. Mol Cell. 2010; 37:633-642.
153. Nakashima A, Tanimura-Ito K, Oshiro N, Eguchi S, Miyamoto T, Momonami A, Kamada S, Yonezawa K and Kikkawa U. A positive role of mammalian Tip41-like protein, TIPRL, in the amino-acid dependent mTORC1-signaling pathway through interaction with PP2A. FEBS Lett. 2013; 587:2924-2929.
154. Yang J and Phiel C. Functions of B56-containing PP2As in major developmental and cancer signaling pathways. Life Sci. 2010; 87:659-666.
155. Magnusdottir A, Stenmark P, Flodin S, Nyman T, Kotenyova T, Graslund S, Ogg D and Nordlund P. The structure of the PP2A regulatory subunit B56 gamma: the remaining piece of the PP2A jigsaw puzzle. Proteins. 2009; 74:212-221.
156. Cho US and Xu W. Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme. Nature. 2007; 445:53-57.
157. Julien LA, Carriere A, Moreau J and Roux PP. mTORC1-activated S6K1 phosphorylates Rictor on threonine 1135 and regulates mTORC2 signaling. Mol Cell Biol. 2010; 30:908-921.
158. Tzatsos A and Kandror KV. Nutrients suppress phosphatidylinositol 3-kinase/Akt signaling via raptor-dependent mTOR-mediated insulin receptor substrate 1 phosphorylation. Mol Cell Biol. 2006; 26:63-76.
159. Shah OJ, Wang Z and Hunter T. Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Current biology : CB. 2004; 14:1650-1656.
160. Tremblay F, Brule S, Hee Um S, Li Y, Masuda K, Roden M, Sun XJ, Krebs M, Polakiewicz RD, Thomas G and Marette A. Identification of IRS-1 Ser-1101 as a target of S6K1 in nutrient- and obesity-induced insulin resistance. Proc Natl Acad Sci U S A. 2007; 104:14056-14061.
161. Harrington LS, Findlay GM, Gray A, Tolkacheva T, Wigfield S, Rebholz H, Barnett J, Leslie NR, Cheng S, Shepherd PR, Gout I, Downes CP and Lamb RF. The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J Cell Biol. 2004; 166:213-223.
162. Carracedo A, Ma L, Teruya-Feldstein J, Rojo F, Salmena L, Alimonti A, Egia A, Sasaki AT, Thomas G, Kozma SC, Papa A, Nardella C, Cantley LC, Baselga J and Pandolfi PP. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. The Journal of clinical investigation. 2008; 118:3065-3074.
163. Guertin DA and Sabatini DM. The pharmacology of mTOR inhibition. Science signaling. 2009; 2:pe24.
164. Liu Q, Thoreen C, Wang J, Sabatini D and Gray NS. mTOR Mediated Anti-Cancer Drug Discovery. Drug discovery today Therapeutic strategies. 2009; 6:47-55.
165. New DC and Wong YH. Molecular mechanisms mediating the G protein-coupled receptor regulation of cell cycle progression. J Mol Signal. 2007; 2:2.
校內:2026-12-31公開