簡易檢索 / 詳目顯示

研究生: 林軒立
Lin, Hsuan-Lih
論文名稱: 原子力氧化術之氧化理論研究與實驗印證
The Thoeretical and Experimental Study on the Oxidation Kinetics of AFM Oxidation
指導教授: 林仁輝
Lin, Jen-Fin
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 105
中文關鍵詞: 氧化原子力顯微鏡
外文關鍵詞: AFM, oxidation
相關次數: 點閱:79下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
      本研究主要在分析空間電荷對於矽晶圓原子力氧化術氧化行為的影響,並探討氧化物膜厚、總氧化時間與調變電壓各項參數間的關係。研究中考慮空間電荷對氧化電場的影響,以包含空間電荷效應的電場模型結合Cabrera-Mott氧化理論做為原子力氧化術的氧化理論模型,並探討空間電荷在調變電壓作用後的殘留比例,將空間電荷殘留的現象於氧化理論中加以考慮,進一步得到更完整的原子力氧化術的氧化機制。接著針對氧化理論中影響氧化反應行為的各個參數設計實驗,由實驗結果來歸納出各參數對於實驗結果的影響。
      由實驗結果看來,直流電壓氧化的情況下,當氧化物的膜厚增加使得氧化電場小於臨界電場時,氧化反應將自行終止,且氧化物膜厚維持在臨界膜厚不再增加。在氧化物膜厚小於臨界膜厚的前提下,氧化物的膜厚與氧化電壓呈正比關係。由調變電壓氧化的結果可以發現,抹除偏壓的大小在5伏特以下會有較佳的抹除效果;而調變次數越多、抹除偏壓作用時間越長也都可以有效的提升氧化的效果。
      由實驗與理論結果的比較,可得知空間電荷確實為造成氧化自行終止的原因,而藉由調變電壓的作用下,可減少空間電荷對氧化行為的影響。本研究中的氧化理論,在氧化物膜厚小於臨界膜厚的前提下,對於直流電壓與調變電壓作用下的氧化行為皆可適用。

    Abstract
      The main point of this study is to analyze how the space charge affects the behavior of AFM(Atomic Force Microscope) oxidation, and also tries to find out the relation between oxide heights, total oxidation time and the parameters of the modulated voltage. In this study, we take the effects of space charge on the oxidation behavior into considerations, such as space charge residual phenomenon. Besides, we derive the model of electric field which includes the space charge effect. We apply this model to the Cabrera-Mott oxidation theory, and use it to describe the AFM oxidation behavior. Then we set up the experiments, and see how the experimental parameters affect the oxidation mechanism form the experimental results..
      From DC experimental results, as the oxide heights increase so that the oxidation field drop below the critical field, the oxidation will self-terminate, and the height keeps at the critical thickness. Oxide height is proportional to the oxidation voltage if it is below the critical thickness. Form AC experimental results, the reset bias must lower the 5 Volt. The more the number of modulations and the longer the reset time will result in higher oxide height.
      Comparing the experimental and the theoretical results, it is concluded that space charge does affect the oxidation behavior and this effect can be minimized by using modulated voltage. As the oxide height is below the critical thickness, the oxidation theory is applicable for both DC and AC oxidation behaviors.

    目錄 頁次 中文摘要 I 英文摘要 II 致謝 IV 目錄 V 表目錄 VIII 圖目錄 IX 符號表 XII 第一章 緒論 1 1-1前言 1 1-2 文獻回顧 2 1-3研究目的與研究內容 5 第二章 掃描探針顯微鏡的原理與原子力顯微鏡氧化術之理論 8 2-1掃描探針顯微鏡的原理 8 2-1-1 概述 8 2-1-2原子力顯微鏡 9 2-1-3表面電位顯微術(Kelvin force microscopy, KFM) 11 2-2原子力顯微鏡氧化術的理論 12 2-2-1概述 12 2-2-2水橋的形成與界面作用力 13 2-2-3包含空間電荷效應的靜電場模型 17 2-2-4矽晶圓原子力氧化術的氧化反應動力學 27 2-2-5 直流電壓與調變電壓對氧化機制的影響 31 2-3利用力曲線與表面電位量測探討調變電壓的選擇對於空間電荷 殘留比例的影響 35 2-3-1引言 35 2-3-2原子力顯微鏡力曲線 35 2-3-3原子力顯微鏡力曲線運用於靜電荷量測 36 第三章 實驗方法與規劃 52 3-1 實驗目的 52 3-2實驗內容 52 3-3實驗儀器 53 3-4實驗步驟 54 第四章 結果與討論 63 4-1引言 63 4-2 水橋輪廓分析 63 4-3 空間電荷的量測與空間電荷殘留比例的計算 65 4-3-1 空間電荷的量測結果 65 4-3-2空間電荷殘留比例的計算結果 69 4-4不同氧化電壓條件下理論分析的氧化結果 70 4-5 不同氧化電壓條件下實驗的氧化物尺寸 72 4-5-1 直流電壓下的氧化行為 72 4-5-2 直流電壓作用下,相同的總氧化時間,不同氧化電壓對 氧化行為的影響 74 4-5-3 調變電壓作用下,不同的抹除偏壓對於氧化行為的影響 75 4-5-4 調變電壓作用下,相同的總氧化時間,不同調變次數對 氧化行為的影響 78 4-5-5 調變電壓作用下,抹除偏壓作用時間長短對氧化行為的 影響 79 第五章 結論與未來研究方向 99 5-1引言 99 5-2結論 99 5-3未來研究方向 100 參考文獻 101

    參 考 文 獻
    1. G. Binning, H. Rohrer, Ch. Gerber, and E. Weibel, “Surface Studies by Scanning Tunneling Microscope”, Phys. Rev. Lett., Vol.49, Issue 1, pp.57-61(1982).
    2. G. Binning, H. Rohrer, and Ch. Gerber, “Atomic Force Microscope”, Vol.56, Issue 9, pp.930-933(1986).
    3. M. A. McCord and R. F. Pease, “Lithography with the Scanning Tunneling Microscope”, J. Vac. Sci. Technol. B, Vol.4, No.1, pp86-88(1986).
    4. J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, M. T. Postek, and J. Bennett, “Modification of Hydogen-Passivated Silicon by a Scanning Tunneling Microscope Operating in Air”, Appl. Phy. Lett., Vol.56, No.20, pp.2001-2003(1990).
    5. E. S. Snow and P. M. Cambell, “Fabrication of Si Nanostructures with an Atomic Force Microscope ”, Appl. Phy. Lett., Vol.64, No.15, pp.2001-2003(1994).
    6. T. Teuschler, K. Mahr, S. Miyaxaki, M. Hundhausen, and L. Ley, “Nanometer-Scale Field-Induced Oxidation of Si(111):H by a Conducting-Probe Scanning Force Microscope: Doping Dependence and Kinetics”, Appl. Phy. Lett., Vol.67, No.21, pp.2001-2003(1995).
    7. A. E. Gordon, R. T. Fayfield, D. D. Litfin, and T. K. Higman, “Mechanisms of Surface Anodization Produced by Scanning Probe Microscopes”, J. Vac. Sci. Technol. B, Vol.13, No.6, pp2805-2808(1995).
    8. D. Stievenard, P. A. Fontaine, and E. Bubois, “Nanooxidation Using a Scanning Probe Microscope: An Analytical Model based on Field Induced Oxidation ”, Appl. Phy. Lett., Vol.70, No.24, pp.3272-3274(1997).
    9. N. Cabrera and N. F. Mott, “Theory of the Oxidation of Metals”, Rep. Prog. Phys., Vol.12, pp.163-184(1948)
    10. Phadon Avouris, Tobias Hertel, and Richard Martel, “Atomic Force Microscope Tip-Induced Local Oxidation of Silicon: Kinetics, Mechanism, and nanofabrication”, Appl. Phy. Lett., Vol.71, No.2, pp.285-287(1997).
    11. J. A. Dagata, T. Inoue, J. Itoh, and H. Yokoyama, “Understanding Scanning Probe Oxidation od Silicon”, Appl. Phy. Lett., Vol.73, No.2, pp.271-273(1998).
    12. J. A. Dagata, T. Inoue, J. Itoh, K. Matsumoto, and H. Yokoyama, “Role of Space Charge in Scanned Probe Oxidation”, J. Appl. Phys., Vol.84, No.12, pp.6891-6900(1998).
    13. F. Marchi, V. Bouchiat, H. Dallaporta, V. Safarov, D. Tonneau, and P. Doppelt, “Growth of Silicon Oxide on Hydrogenated Silicon during Lithography with an Atomic Force Microscope”, J. Vac. Sci. Technol. B, Vol.16, No.6, pp2952-2956(1998).
    14. Ricardo Garcia, Montserrat, and Francesc Perez-Murano, “Local Oxidation of Silicon Surfaces by Dynamic Force Microscopy: Nanofabrication and Water Bridge formation”, Appl. Phy. Lett., Vol.72, No.18, pp.2295-2297(1998).
    15. Francesc Perez-Murano, Karen Birkelund, Kiyoshi Morimoto, and John A. Dagata, “Voltage Modulation Scanned Probe Oxidation”, Appl. Phy. Lett., Vol.75, No.2, pp.199-201(1999).
    16. Ricardo Garcia, Montserrat, and Heinrich Rohrer, “Pattering of Silicon Surfaces with Noncontact Atomic Force Microscopy: Field-Induced Formation of Nanometer-Size Water Bridges”, J. Appl. Phys., Vol.86, No.4, pp.1898-1903(1999).
    17. Emmanuel Dubois and Jean-Luc Budendorff, “Kinetics of Scanned Probe Oxidation: Space-Charge Limited Growth”, J. Appl. Phys., Vol.87, No.11, pp.8148-8154(2000).
    18. Montserrat Calleja and Ricardo Garcia, “Nano-Oxidation of Silicon Surfaces by Noncontact Atomic Force Microscopy: Size Dependence on Voltage and Pulse Duration”, Appl. Phy. Lett., Vol.76, No.23, pp.3427-3429(2000).
    19. Marta Tello and Ricardo Garcia, “Nano-Oxidation of Silicon Surfaces: Comparison of Noncontact and Contact Atomic-Force Microscopy Methods ”, Appl. Phy. Lett., Vol.79, No.3, pp.424-426(2001).
    20. Montserrat Calleja, Marta Tello, and Ricardo Garcia, “Size Determination of Field-Induced Water Menisci in Noncontact Atomic Force Microscopy”, J. Appl. Phys., Vol.92, No.9, pp.5539-5542(2002).
    21. G. H. Buh, H. J. Chung, J. H. Yi, I. T. Yoon and Y. Kuk, “Electrical Characterization of an Operating Si pn-Junction Diode with Scanning Capacitance Microscope and Kelvin Probe Force Microscope”,
    22. Jacb N. Israelachvili, Intermolecular and Surface Forces, 2nd ed ., Academic Press, 1991.
    23.W. Adamson, Physical Chemistry of Surface, 5th ed., John Wiley & Sons, Inc., 1990.
    24. David J. Griffiths, Introduction to Electrodynamics, 3rd ed., Prentice Hall, 1999.
    25. D. R. Wolters and A. T. A. Zegers-van Duynhoven, “Kinetics of Dry Oxidation of Silicon. I. Space-Charge-Limited Growth”, J. Appl. Phys., Vol.65, No.12, pp.5128-5133(1989).
    26. Paul Shewmon, Diffusion in Solids, 2nd ed., The Minerals, Metals & Materials Society, 1989.
    27. K. L. Johnson, Contact Mechanics, Cambridge University Press, 1985.
    28. Kaye, Laby, Tables of Physical and Chemical Constants, 5th ed., Longman, 1986.
    29. S. M. Sze, Physics of Semiconductor Devices, John Wiley & Sons, 1981.
    30. Bharat Bhushan(Series Editor), Handbook of Micro/Nano Tribology, CRC press, 1995.

    下載圖示 校內:2005-07-30公開
    校外:2005-07-30公開
    QR CODE