| 研究生: |
高杙鋆 Gao, Yi-Yun |
|---|---|
| 論文名稱: |
應用複合材料轉軸於齒輪轉子軸承系統之動態分析 Dynamic Analysis of a Geared Rotor-Bearing System with Composite Shaft |
| 指導教授: |
崔兆棠
Choi, Siu-Tong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 有限元素法 、齒輪轉子軸承系統 、複合材料轉軸 |
| 外文關鍵詞: | Finite Element Method, Geared Rotor-Bearing System, Composite Shaft |
| 相關次數: | 點閱:167 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以有限元素法來分析含複合材料轉軸之齒輪轉子軸承系統的動態行為。系統由轉軸、轉盤、線性軸承及齒輪對所構成。轉軸是由複合材料所組成且模擬為Timoshenko樑,即考慮轉軸之旋轉慣性及剪應變效應,轉盤假設為剛體,並考慮質量偏心及陀螺效應,軸承以線性彈簧及線性阻尼器來模擬;齒輪對視為由彈簧及阻尼器沿著壓力線連接的兩個剛性轉盤。本文分別探討轉軸疊層方式、齒輪嚙合勁度係數、軸承勁度係數及軸承阻尼係數,對系統共振頻率與側向穩態響應的影響。由數值結果顯示,隨著齒輪嚙合勁度係數的提升,系統耦合振動的共振頻率會隨之提升,而系統耦合振動的共振響應會隨之下降。當軸承的勁度係數增大時,系統的共振頻率也隨之增大。當軸承的阻尼係數增大時,系統的共振響應起初會隨之降低;但當軸承的阻尼係數增大至使系統之共振響應為最小後,系統的共振響應會著阻尼係數的增大而上升。
Dynamic behavior of a geared rotor-bearing system with composite shafts is analyzed by the finite element method in this thesis. Rotating shafts of the system are composed of composite material and modeled as Timoshenko beams, which includes the effects of rotary inertia and shear deformation. Disk is considered to be rigid with its mass eccentricity and gyroscopic effect taken into account. Bearings are considered to be linear and modeled as spring-damper sets. The gear mesh is modeled as a pair of rigid disks connected by a spring-damper set along the pressure line. Effects of stacking sequence of rotating shaft, mesh stiffness coefficient of gear pair, stiffness coefficient and damping coefficient of bearings on the resonance frequency and steady-state response of the system are investigated. Numerical results of this research show that, as the mesh stiffness coefficient of gear pair increases, the resonance frequencies of the coupled vibration increase and the resonance responses of coupled vibration decrease. As the stiffness coefficient of the bearings increases, the resonance frequencies of the system increase, and as the damping coefficient of bearings increases, the resonance response of the system first decreases and then increases.
[1]Ruhl, R. L., and Booker, J. F., “A Finite Element Model for Distributed Parameter Turbo-rotor System,” ASME, Journal of Engineering for Industry, Vol. 94, pp. 126-132, 1972.
[2]Nelson, H. D., and McVaugh, J. M., “The Dynamics of Rotor-Bearing Systems Using Finite Elements,” ASME, Journal of Engineering for Industry, Vol. 98, pp. 593-600, 1976.
[3]Nelson, H. D., “A Finite Rotating Shaft Element Using Timoshenko Beam Theory,” ASME, Journal of Mechanical Design, Vol. 102, pp. 793-803, 1980.
[4]Dym, C. L., and Shames, I. H., Solid Mechanics–A Variational Approach, McGraw-Hill, New York, 1973.
[5]Eshleman, R. L., and Eubanks, R. A., “On the Critical Speeds of a Continuous Rotor,” ASME, Journal of Engineering for Industry, Vol. 91, pp. 1180-1188, 1969.
[6]Mitchell, L. D., and Mellen, D. M., “Torsional-Lateral Coupling in a Geared High-Speed Rotor System,” ASME, Paper No.75-Det-75, 1975.
[7]Lund, J., “Critical Speeds, Stability and Response of Geared Train of Rotors,” ASME, Journal of Mechanical Design, Vol. 100, pp. 535-539, 1978.
[8]Iida, H., Tamura, A., and Oonishi, M., “Coupled Torsion-Flexural Vibration of Shaft in Geared System,” Bulletin of JSME, Vol. 28, pp. 2494-2698, 1985.
[9]Iida, H., and Yamamoto, H., “Dynamics Characteristic of a Geared Train System with Softly Supported Shaft,” Bulletin of JSME, Vol.29, pp.1811-1816, 1986.
[10]Kahraman, A., Ozguven, H. N., Houser, D. R., and Zakrajsek, J. J., “Dynamic Analysis of Geared Rotors by Finite Elements,” ASME, Journal of Mechanical Design, Vol. 114, pp. 507-514, 1992.
[11]Shiau, T.N., Chou, Y. W., Chang, J. R., and Nelson, H. D., “A Study on the Dynamic Characteristics of Geared Rotor-Bearing System with Hybrid Method,” International Gas Turbine and Aeroengine Congress and Exposition, The Hague, Netherlands, 1994.
[12]Rao, J. S., Shiau, T. N., and Chang, J. R., “Coupled Bending-Torsion Vibration of Geared Rotors,” Design Engineering Technical Conference, Boston, DE-Vol. 84-2, 3, Part B, pp. 977-989.
[13]Choi, S. T., and Mau, S. Y., “Dynamic Analysis of Geared Rotor-Bearing System by the Transfer Matrix Method,” ASME, Journal of Mechanical Design, 123, pp. 562-568.
[14]Zinberg, H., and Symonds, M. F., “The Devleopment of an Advanced Composite Tail Rotor Drivershaft,” 26th Annual National Forum of American Helicopter Society, pp. 1-14, 1970.
[15]Dos Reis, H. L. M., Goldman, R. B. and Verstrate, P. H., “Thin-Walled Laminated Composite Cylindrical Critical Speed Analysis,” Journal of Composites Technology and Research, Vol. 9, pp. 58-62, 1987.
[16]Bert, C. W., “The Effect of Bending-Twisting Coupling on the Critical Speed of a Driveshaft,” Proceeding, 6th Japan-U.S Conference on Composites Materials, Orlando, pp. 29-36, 1993.
[17]Bert, C. W., and Kim, C. D., “Whirling of Composite-Material Driveshaft Including Bending-Twisting Coupling and Transverse Shear Deformation,” Journal of Vibration and Acoustics, Vol. 117, pp. 17-21, 1995.
[18]Singh, S. P., and Gupta, K., “Composite Shaft Rotordynamic Analysis Using a Layerwise Theory,” Journal of Sound and Vibration, Vol. 191, pp. 739-756, 1996.
[19]Chang, M. Y., “A Simple Spinning Laminated Composite Shaft Model,” International Journal of Solid and Structures, Vol. 41, pp. 637-662, 2004.
[20]黃忠立, 轉子-軸承系統在多臨界轉速限制下之輕量化設計, 國立成功大學航空太空工程研究所碩士論文, 1987.
[21]Gibson, R. F., Principles of Composite Material Mechanics, CRC Press, 2014.
[22]Dharmarajan, S., and McCutchen Jr., H., “Shear Coefficients for Orthotropic Beams,” Journal of Composite Materials, Vol.7, pp. 530-535, 1973.