簡易檢索 / 詳目顯示

研究生: 蔡文杰
Tsai, Wen-Chieh
論文名稱: 蝴蝶蘭花部發育之研究:B-群基因之角色
Study of floral development in Phalaenopsis orchid:the roles of B-class genes
指導教授: 陳虹樺
Chen, Hong-Hwa
陳文輝
Chen, Wen-Huei
學位類別: 博士
Doctor
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 139
中文關鍵詞: B-群基因蝴蝶蘭花部發育
外文關鍵詞: floral development, B-class genes, Phalaenopsis orchid
相關次數: 點閱:40下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 蘭科植物包含了大約2,5000物種,是被子植物中最大的一科。姬蝴蝶蘭為蝴蝶蘭屬植物,為台灣原生蝴蝶蘭之一。蝴蝶蘭具有三個花萼、兩個花瓣、一個唇瓣以及雄蕊及雌蕊的癒合體-蕊柱,且花萼及花瓣在外觀上幾乎相同。蘭花高度特化的花部結構有別於模式植物阿拉伯芥及水稻,可提供生物學上很好的研究基材,以了解較高複雜度的花部形態發育調控網絡。本研究建立了一個5593筆姬蝴蝶蘭花苞表現序列標籤之資料庫(Expressed sequence tags database, dbEST),以分析花部表現基因組的表現模式,並鑑定出共217筆轉錄因子相關的ESTs。從此資料庫中,我們鑑定了4個類DEF/AP3基因(PeMADS2、PeMADS3、PeMADS4以及PeMADS5)以及一個類GLO/PI基因(PeMADS6)。實驗結果顯示,4個類DEF/AP3基因在決定蝴蝶蘭花器的發育分別扮演不同的角色,而PeMADS6除了具有決定花部發育的功能之外,還參與子房/胚株的發育以及具有延長花壽命的功能。進一步,我們利用膠體泳動位移分析及酵母菌雙雜合分析法以確認這些蛋白質彼此之間的交互作用。結果顯示,4個類DEF/AP3蛋白質彼此有能力和PeMADS6蛋白質進行交互作用,而且PeMADS4會形成同源雙聚合體,而PeMADS6會形成同源多聚合體和含有CArG序列的DNA片段進行結合。綜合這些結果,我們提出了一個較模式植物花部發育複雜的ABC模式,來解釋蝴蝶蘭花部MADS-box蛋白質如何控制蝴蝶蘭花萼、花瓣及唇瓣的發育。此研究成果將開啟對蘭科植物花部形態發育調控網絡之分子機制的了解。

    With more than 25,000 species, Orchidaceae is one of the largest angiosperm family. Like other petaloid monocots, all orchids have six tepals arranged in two whorls. In most orchid species, the median tepal in the inner whorl, the labellum or lip, generally differs from the rest of the tepals. In addition, the style and stamens are always fused to form a highly modified structure called gynostemium or column. For better understanding of the gene expression in the reproductive organ of orchids, and investigating in depth the molecular mechanism of orchid floral development, we established an expressed sequence tag database (dbEST) containing a total of 5593 randomly selected cDNA clones from Phalaenopsis equestris flower buds for functional characterization. Among them, 217 transcription factor related ESTs were identified. Furthermore, four DEF/AP3-like MADS-box genes (PeMADS2-PeMADS5) and one GLO/PI-like gene (PeMADS6) were identified from this dbEST. Comparing their expression patterns in both wild-type and peloric mutant floral organs, we found diverse functions of the four DEF/AP3-like genes in determining floral development. In addition, PeMADS6 is not only involved in petaloid formation but also correlated with flower longevity and ovary/ovule development. Furthermore, interactions between these B-function proteins were also investigated by use of gel mobility shift assay and yeast two-hybrid analysis. Our results showed that all four DEF/AP3-like PeMADS box proteins potentially interact with GLO/PI-like PeMADS6 individually. In addition, both PeMADS4 homodimer and PeMADS6 homo-multimer also presented CArG-motif binding activity. Together, we proposed a much more complicated modified ABC model to explain the molecular mechanism of orchid floral development. These results will advance the knowledge for the regulatory network of orchid floral morphogenesis.

    Table of Contents 中文摘要 i Abstract ii Chapter 1. Literature Survey 1 1.1 Floral development of orchid 2 1.1.1 Floral morphology of orchid 2 1.1.2 Evolution of orchid lip is associated with the attraction of pollinator 3 1.1.3 Molecular bases of orchid floral development 4 1.2 Expressed sequence tag (EST) and its applications 4 1.2.1 Arabidopsis and rice structure genomics 4 1.2.2 Significance of EST in genome research 5 1.2.3 Limitations of EST 7 1.2.4 Bioinformatics of plant EST collections 9 1.3 MADS-box genes and floral development 10 1.3.1 MADS-box genes 10 1.3.2 The ABC of floral development 12 1.3.3 SEPALLATA genes regulate floral organ identity 14 1.3.4 Functional genomics provides the tools 15 1.4 Specific aims 15 References 16 Chapter 2. Expression analysis of ESTs derived from the flower buds of Phalaenopsis equestris 22 2.1 Abstract 23 2.2 Introduction 24 2.3 Materials and methods 25 2.4 Results 27 2.5 Discussion 29 2.6 Acknowledgements 31 References 31 Tables (2-1~2-2) 34 Figures (2-1~2-2) 36 Chapter 3. Four DEF-like MADS box genes displayed distinct floral morphogenetic roles in Phalaenopsis orchid 38 3.1 Abstract 39 3.2 Introduction 40 3.3 Materials and methods 42 3.4 Results 47 3.5 Discussion 53 3.6 Acknowledgments 56 References 56 Tables (3-1~3-2) 59 Figures (3-1~3-8) 61 Chapter 4. PeMADS6, a GLOBOSA/PISTILLATA-like gene in Phalaenopsis equestris involved in petaloid formation, and correlated with flower longevity and ovary development 76 4.1 Abstract 77 4.2 Introduction 78 4.3 Materials and methods 80 4.4 Results 85 4.5 Discussion 90 4.6 Acknowledgments 93 References 94 Table (4-1) 97 Figures (4-1~4-11) 98 Chapter 5. Interactions of B-function complex genes control Phalaenopsis orchid flower development 115 5.1 Abstract 116 5.2 Introduction 117 5.3 Materials and methods 119 5.4 Results and discussion 120 5.5 Conclusions 123 5.6 Acknowledgements 122 References 124 Figures (5-1~5-5) 127 Chapter 6. Conclusions and perspectives 136 References 139

    Adams, M.D., Kelley, J.M., Gocayne, J.D., Dubnick, M., Polymeropoulos, M.H., Xiao, H., Merril, C.R., Wu, A., Olde, B. and Moreno, R.F. (1991) Complementary DNA sequencing: Expressed sequence tags and human genome project. Science 252: 1651-1656.
    Alvarez-Buylla, E.R., Pelaz, S., Liljegren, S.J., Gold, S.E., Burgeff, C., Ditta, G.S., Ribas de Pouplana, L., Martinez-Castilla, L. and Yanofsky, M.F. (2000) An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc. Natl. Acad. Sci. 97: 5328-5333.
    Arabidopsis Genome Initiative. (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796-815.
    Barry, G.F. (2001) The use of the Monsanto draft rice genome sequence in research. Plant Physiol. 125: 1164–1165.
    Bonaldo, M.F., Lennon, G. and Soares, M.B. (1996) Normalization and subtraction: two approaches to facilitate gene discovery. Genome Res. 6: 791-806.
    Borba, E.L. and Semir, J. (1998) Wind-assisted by pollination in three Bulbophyllum (Orchidaceae) species occurring in the Brazilian campos rupestres. Lindleyana 13: 203-218.
    Bourdon, V., Naef, F., Rao, P.H., Reuter, V., Mok, S.C., Bosl, G.J., Koul, S., Murty, V.V., Kucherlapati, R.S. and Chaganti, R.S. (2002) Genomic and expression analysis of the 12p11–p12 amplicon using EST arrays identifies two novel amplified and overexpressed genes. Cancer Res. 62: 6218-6223.
    Bowman, J.L., Smyth, D.R. and Meyerowitz, E.M. (1991) Genetic interactions among floral homeotic genes of Arabidopsis. Development 112: 1-20.
    Brenner, S. (1990) The human genome: the nature of the enterprise. CIBA Found. Symp. 149: 6-17.
    Campbell, D. R. (1991) Effects of floral traits on sequential components of fitness in Ipomopsis aggregata. Am. Nat. 137: 713-737.
    Carninci, P. and Hayashizaki, Y. (1999) High-efficiency full-length cDNA cloning. Methods Enzymol. 303: 19-44.
    Carninci, P., Kvam, C., Kitamura, A., Ohsumi, T., Okazaki, Y., Itoh, M., Kamiya, M., Shibata, K., Sasaki, N., Izawa, M., Muramatsu, M., Hayashizaki, Y. and Schneider, C. (1996) High-efficiency full-length cDNA cloning by biotinylated CAP trapper. Genomics 37: 327-336.
    Carninci, P., Nishiyama, Y., Westover, A., Itoh, M., Nagaoka, S., Sasaki, N., Okazaki, Y., Muramatsu, M. and Hayashizaki, Y. (1998) Thermostabilization and thermoactivation of thermolabile enzymes by trehalose and its application for the synthesis of full length cDNA. Proc. Natl. Acad. Sci. 95: 520-524.
    Carninci, P., Westover, A., Nishiyama, Y., Ohsumi, T., Itoh, M., Nagaoka, S., Sasaki, N., Okazaki, Y., Muramatsu, M., Schneider, C. and Hayashizaki, Y. (1997) High efficiency selection of full-length cDNA by improved biotinylated cap trapper. DNA Res. 4: 61-66.
    Castelli, V., Aury, J.M., Jaillon, O., Wincker, P., Clepet, C., Menard, M., Cruaud, C., Quetier, F., Scarpelli, C., Schachter, V., Temple, G., Caboche, M., Weissenbach, J. and Salanoubat, M. (2004) Whole genome sequence comparisons and "full-length" cDNA sequences: a combined approach to evaluate and improve Arabidopsis genome annotation. Genome Res. 14: 406-413.
    Christensen, D.E. (1994) Fly pollination in the Orchidaceae. In: Arditti J, ed. Orchid biology: reviews and perspectives, Vol. VI. New York: John Wiley and Sons, 415-454.
    Coen, E.S. and Meyerowitz, E.M. (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353: 31-37.
    Curry, J. and Glickman, B.W. (1997) Moloney murine leukemia reverse transcriptase suspect in the production of multiple misincorporations during hprt cDNA synthesis. Mutat. Res. 374: 145-148.
    Dafni, A. and Bernhardt, P. (1990) Pollination of terrestrial orchids of Southern Australia and the Mediterranean region. Systematics, ecological and evolutionary implications. Evol. Biol. 24: 193-253.
    Davies, B., Egea-Cortines, M., Silva, E.A., Saedler, H. and Sommer, H. (1996) Multiple interactions amongst floral homeotic MADS box proteins. EMBO J. 15: 4330-4343.
    De Bodt, S., Raes, J., Florquin, K., Rombauts, S., Rouze, P., Theissen, G. and Van de Peer, Y. (2003a) Genomewide structural annotation and evolutionary analysis of the type I MADS-box genes in plants. J. Mol. Evol. 56: 573-586.
    De Bodt, S., Raes, J., Van de Peer, Y. and Theissen, G. (2003b) And then there were many: MADS goes genomics. Trends Plant Sci. 8: 475-483.
    Ditta, G., Pinyopich, A., Robles, P., Pelaz, S. and Yanofsky, M.F. (2004) The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr. Biol. 14: 1935-1940.
    Dressler, R.L. (1990) The Orchids: Natural History and Classification. Harvard University Press, Cambridge, MA.
    Egea-Cortines, M., Saedler, H. and Sommer, H. (1999) Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J. 18: 5370-5379.
    Eujayl, I., Sledge, M.K., Wang, L., May, G.D., Chekovskiy, K., Zwonitzer, J.C. and Mian, M.A.R. (2004) Medicago truncatula EST-SSRs reveal cross-species genetic markers for Medicago spp. Theor. Appl. Genet. 108: 414-422.
    Ewing, B. and Green, P. (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8: 186-194.
    Ewing, R.M., Kahla, A.B., Poirot, O., Lopez, F., Audic, S. and Claverie, J.M. (1999) Large-scale statistical analyses of rice ESTs reveal correlated patterns of gene expression. Genome Res. 9: 950-959.
    Fan, H.-Y., Hu, Y., Tudor, M. and Ma, H. (1997) Specific interactions between the K domains of AG and AGLs, members of the MADS domain family of DNA binding proteins. Plant J. 11: 999-1010.
    Flanagan, C.A. and Ma, H. (1994) Spatially and temporally regulated expression of the MADS-box gene AGL2 in wild-type and mutant Arabidopsis flowers. Plant Mol. Biol. 26: 581-595.
    Fritz, A.L. and Nilsson, A.L. (1996) Reproductive success and gender variation in deceit-pollinated orchids. In : Floral Biology: Studies on Floral Evolution in Animal-pollinated Plants. pp. 319-338. Chapman and Hall, New York, NY.
    Galen, C. (1989) Measuring pollinator-mediated selection on morphometric floral traits. Bumblebees and the alpine sky pilot, Polemonium viscosum. Evolution 41: 882-890.
    Gao, L.F., Jing, R.L., Huo, N.X., Li, X.P., Zhou, R.H., Chang, X.P., Tang, J.F., Ma, Z.Y. and Jia, J.Z. (2004) One hundred and one new microsatellite loci derived from ESTs (EST-SSRs) in bread wheat. Theor. Appl. Genet. 108: 1392 -1400.
    Goff, S.A., Ricke, D., Lan, T.H., Presting, G., Wang, R., Dunn, M., Glazebrook, J., Sessions, A., Oeller, P., Varma, H., Hadley, D., Hutchison, D., Martin, C., Katagiri, F., Lange, B.M., Moughamer, T., Xia, Y., Budworth, P., Zhong, J., Miguel, T., Paszkowski, U., Zhang, S., Colbert, M., Sun, W.L., Chen, L., Cooper, B., Park, S., Wood, T.C., Mao, L., Quail, P., Wing, R., Dean, R., Yu, Y., Zharkikh, A., Shen, R., Sahasrabudhe, S., Thomas, A., Cannings, R., Gutin, A., Pruss, D., Reid, J., Tavtigian, S., Mitchell, J., Eldredge, G., Scholl, T., Miller, R.M., Bhatnagar, S., Adey, N., Rubano, T., Tusneem, N., Robinson, R., Feldhaus, J., Macalma, T., Oliphant, A. and Briggs, S. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296: 92-100.
    Gordon, D., Abajian, C. and Green, P. (1998) Consed: a graphical tool for sequence finishing. Genome Res. 8: 195-202.
    Herwig, R., Schulz, B., Weisshaar, B., Hennig, S., Steinfath, M., Drungowski, M., Stahl, D., Wruck, W., Menze, A., O'Brien, J., Lehrach, H. and Radelof, U. (2002) Construction of a 'unigene' cDNA clone set by oligonucleotide fingerprinting allows access to 25 000 potential sugar beet genes. Plant J. 32: 845-857.
    Hillier, L.D., Lennon, G., Becker, M., Bonaldo, M.F., Chiapelli, B., Chissoe, S., Dietrich, N., DuBuque, T., Favello, A., Gish, W., Hawkins, M., Hultman, M., Kucaba, T., Lacy, M., Le, M., Le, N., Mardis, E., Moore, B., Morris, M., Parsons, J., Prange, C., Rifkin, L., Rohlfing, T., Schellenberg, K. and Marra, M. (1996) Generation and analysis of 280,000 human expressed sequence tags. Genome Res. 6: 807-828.
    Honma, T. and Goto, K. (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409: 525-529.
    Hsu, H.-F., Huang, C.-H. and Yang, C.-H. (2003) Ectopic expression of an orchid (Oncidium Grower Ramsey) AGL6-like gene promotes flowering by activating flowering time genes in Arabidopsis thaliana. Plant Cell Physiol. 44: 783-794.
    Hsu, H.-F. and Yang, C.-H. (2002) An orchid (Oncidium Grower Ramsey) AP3-like MADS gene regulates floral formation and initiation. Plant Cell Physiol. 43: 1198-1209.
    Huang, X. and Madan, A. (1999) CAP3: a DNA sequence assemblyprogram. Genome Res. 9: 868-877.
    Immink, R.G., Gadella, T.W. Jr., Ferrario, S., Busscher, M. and Angenent, G.C. 2002. Analysis of MADS box protein-protein interactions in living plant cells. Proc. Natl. Acad. Sci. 99: 2416-2421.
    Irish, V.F. (2003) The evolution of floral homeotic gene function. BioEssays 25: 637-646.
    Jander, G., Norris, S.R., Rounsley, S.D., Bush, D.F., Levin, I.M. and Last, R.L. (2002) Arabidopsis map-based cloning in the post-genome era. Plant Physiol. 129: 440–450.
    Kantety, R.V., Rota, M.L., Matthews, D.E. and Sorrells, M.E. (2002) Data mining for simple sequence repeats in expressed sequence tags from barely, maize, rice, sorghum and wheat. Plant Mol. Biol. 48: 501-510.
    Kramer, E.M., Dorit, R.L. and Irish, V.F. (1998) Molecular evolution of petal and stamen development: Gene duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149: 765-783.
    Kocyan, A. and Endress, P.K. (2001) Floral structure and development of Apostasia and Neuwiedia (Apostasioideae) and their relationship to other Orchidaceae. Int. J. Plant Sci. 162: 847-867.
    Kull, T and Arditti, J. (2002) Orchid Biology: reviews and perspectives VIII: 83-138. Kluwer Academic Publishers, Netherlands.
    Kurzweil, H. (1987a) Developmental studies in orchid flowers I: Epidendroid and vandoid species. Nord. J. Bot. 7: 427-442.
    Kurzweil, H. (1987b) Developmental studies in orchid flowers II: Orchidoid species. Nord. J. Bot. 7: 443-451.
    Kurzweil, H. (1988) Developmental studies in orchid flowers III: Neottioid species. Nord. J. Bot. 8: 271-282.
    Kurzweil, H. (1993a) Developmental studies in orchid flowers IV: Cypripedioid species. Nord. J. Bot. 13: 423-430.
    Kurzweil, H. (1993b) The remarkable anther structure of Pachites bodkinii (Orchidaceae). Bot. Jahrb. Syst. 114: 561-569.
    Kurzweil, H. (1996) Floral morphology and ontogeny in Satyriinae (Orchidaceae). Flora 191: 9-28.
    Lamb, R.S. and Irish, V.F. (2003) Functional divergence within the APETALA3/PISTILLATA floral homeotic gene lineages. Proc. Natl. Acad. Sci. 100: 6558-6563.
    Linder, H.P. and Kurzweil, H. (1996) Ontogeny and phylogeny of Brownleea (Orchidaceae). Nord. J. Bot. 16: 345-357.
    Lockhart, D.J. and Winzeler, E.A. (2000) Genomics, gene expression and DNA arrays. Nature 405: 827-836.
    Lu, Z.-X., Wu, M., Loh, C.-S., Yeong, C.-Y. and Goh, C.-J. (1993) Nucleotide sequence of a flower-specific MADS box cDNA clone from orchid. Plant Mol Biol. 23: 901-904.
    Mandel, M.A. and Yanofsky, M.F. (1998) The Arabidopsis AGL9 MADS-box gene is expressed in young flower primordia. Sex. Plant Reprod. 11: 22-28.
    Meve, U. and Liede, S. (1994) Floral Biology and pollination in stapeliads – new results and a literature review. Plant Syst. Evol. 192: 99-116.
    Mizuno, Y., Carninci, P., Okazaki, Y., Tateno, M., Kawai, J., Amanuma, H., Muramatsu, M. and Hayashizaki, Y. (1999) Increased specificity of reverse transcription priming by trehalose and oligo-blockers allows high-efficiency window separation of mRNA display. Nucleic Acids Res. 27: 1345-1349.
    Moore, S., Vrebalov, J., Payton, P. and Giovannoni, J. (2002) Use of genomics tools to isolate key ripening genes and analyse fruit maturation in tomato. J. Exp. Bot. 53: 2023-2030.
    Münster, T., Pahnke, J., Di Rosa, A., Kim, J.T., Martin, W., Saeder, H. and Theissen, G. (1997) Floral homeotic genes were recruited from homologous MADS-box genes preexistng in the common ancestor of ferns and seed plants. Proc. Nat. Acad. Sci. 94: 2415-2420.
    Nagata, T., Iizumi, S., Satoh, K., Ooka, H., Kawai, J., Carninci, P., Hayashizaki, Y., Otomo, Y., Murakami, K., Matsubara, K. and Kikuchi, S. (2004) Comparative analysis of plant and animal calcium signal transduction element using plant full-length cDNA data. Mol Biol Evol. 21: 1855-1870.
    Ng, M. and Yanofsky, M.F. (2001) Function and evolution of the plant MADS-box gene family. Nat. Rev. Genet. 2: 186-195.
    Nishiyama, T., Fujita, T., Shin-I, T. Seki, M., Nishide, H., Uchiyama, I., Kamiya, A., Carninci, P., Hayashizaki, Y., Shinozaki, K., Kohara, Y. and Hasebe, M. (2003) Comparative genomics of Physcomitrella patens gametophytic transcriptome and Arabidopsis thaliana: implication for land plant evolution. Proc. Natl Acad. Sci. 100: 8007-8012.
    Notsu, Y., Masood, S., Nishikawa, T., Kubo, N., Akiduki, G., Nakazono, M., Hirai, A. and Kadowaki, K. (2002) The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants. Mol. Genet. Genomics 268: 434-445.
    Ogihara, Y., Mochida, K., Nemoto, Y., Murai, K., Yamazaki, Y., Shin-I, T. and Kohara, Y. (2003) Correlated clustering and virtual display of gene expression patterns in the wheat life cycle by large-scale statistical analyses of expressed sequence tags. Plant J. 33: 1001-1011.
    Ohlrogge, J. and Benning, C. (2000) Unraveling plant metabolism by EST analysis. Curr. Opin. Plant Biol. 3: 224-228.
    Okazaki, Y., Furuno, M., Kasukawa, T., Adachi, J., Bono, H., Kondo, S., Nikaido, I., Osato, N., Saito, R., Suzuki, H., Yamanaka, I., Kiyosawa, H., Yagi, K., Tomaru, Y., Hasegawa, Y., Nogami, A., Schonbach, C., Gojobori, T., Baldarelli, R., Hill, D.P., Bult, C., Hume, D.A., Quackenbush, J., Schriml, L.M., Kanapin, A., Matsuda, H., Batalov, S., Beisel, K.W., Blake, J.A., Bradt, D., Brusic, V., Chothia, C., Corbani, L.E., Cousins, S., Dalla, E., Dragani, T.A., Fletcher, C.F., Forrest, A., Frazer, K.S., Gaasterland, T., Gariboldi, M., Gissi, C., Godzik, A., Gough, J., Grimmond, S., Gustincich, S., Hirokawa, N., Jackson, I.J., Jarvis, E.D., Kanai, A., Kawaji, H., Kawasawa, Y., Kedzierski, R.M., King, B.L., Konagaya, A., Kurochkin, I.V., Lee, Y., Lenhard, B., Lyons, P.A., Maglott, D.R., Maltais, L., Marchionni, L., McKenzie, L., Miki, H., Nagashima, T., Numata, K., Okido, T., Pavan, W.J., Pertea, G., Pesole, G., Petrovsky, N., Pillai, R., Pontius, J.U., Qi, D., Ramachandran, S., Ravasi, T., Reed, J.C., Reed, D.J., Reid, J., Ring, B.Z., Ringwald, M., Sandelin, A., Schneider, C., Semple, C.A., Setou, M., Shimada, K., Sultana, R., Takenaka, Y., Taylor, M.S., Teasdale, R.D., Tomita, M., Verardo, R., Wagner, L., Wahlestedt, C., Wang, Y., Watanabe, Y., Wells, C., Wilming, L.G., Wynshaw-Boris, A., Yanagisawa, M., Yang, I., Yang, L., Yuan, Z., Zavolan, M., Zhu, Y., Zimmer, A., Carninci, P., Hayatsu, N., Hirozane-Kishikawa, T., Konno, H., Nakamura, M., Sakazume, N., Sato, K., Shiraki, T., Waki, K., Kawai, J., Aizawa, K., Arakawa, T., Fukuda, S., Hara, A., Hashizume, W., Imotani, K., Ishii, Y., Itoh, M., Kagawa, I., Miyazaki, A., Sakai, K., Sasaki, D., Shibata, K., Shinagawa, A., Yasunishi, A., Yoshino, M., Waterston, R., Lander, E.S., Rogers, J., Birney, E., Hayashizaki, Y.; FANTOM Consortium; RIKEN Genome Exploration Research Group Phase I and II Team. (2002) Analysis of the mouse transcriptome based on functional annotation of 60,770 full length cDNAs. Nature 420: 563-573.
    Ota, T., Suzuki, Y., Nishikawa, T., Otsuki, T., Sugiyama, T., Irie, R., Wakamatsu, A., Hayashi, K., Sato, H., Nagai, K., Kimura, K., Makita, H., Sekine, M., Obayashi, M., Nishi, T., Shibahara, T., Tanaka, T., Ishii, S., Yamamoto, J., Saito, K., Kawai, Y., Isono, Y., Nakamura, Y., Nagahari, K., Murakami, K., Yasuda, T., Iwayanagi, T., Wagatsuma, M., Shiratori, A., Sudo, H., Hosoiri, T., Kaku, Y., Kodaira, H., Kondo, H., Sugawara, M., Takahashi, M., Kanda, K., Yokoi, T., Furuya, T., Kikkawa, E., Omura, Y., Abe, K., Kamihara, K., Katsuta, N., Sato, K., Tanikawa, M., Yamazaki, M., Ninomiya, K., Ishibashi, T., Yamashita, H., Murakawa, K., Fujimori, K., Tanai, H., Kimata, M., Watanabe, M., Hiraoka, S., Chiba, Y., Ishida, S., Ono, Y., Takiguchi, S., Watanabe, S., Yosida, M., Hotuta, T., Kusano, J., Kanehori, K., Takahashi-Fujii, A., Hara, H., Tanase, T.O., Nomura, Y., Togiya, S., Komai, F., Hara, R., Takeuchi, K., Arita, M., Imose, N., Musashino, K., Yuuki, H., Oshima, A., Sasaki, N., Aotsuka, S., Yoshikawa, Y., Matsunawa, H., Ichihara, T., Shiohata, N., Sano, S., Moriya, S., Momiyama, H., Satoh, N., Takami, S., Terashima, Y., Suzuki, O., Nakagawa, S., Senoh, A., Mizoguchi, H., Goto, Y., Shimizu, F., Wakebe, H., Hishigaki, H., Watanabe, T., Sugiyama, A., Takemoto, M., Kawakami, B., Yamazaki, M., Watanabe, K., Kumagai, A., Itakura, S., Fukuzumi, Y., Fujimori, Y., Komiyama, M., Tashiro, H., Tanigami, A., Fujiwara, T., Ono, T., Yamada, K., Fujii, Y., Ozaki, K., Hirao, M., Ohmori, Y., Kawabata, A., Hikiji, T., Kobatake, N., Inagaki, H., Ikema, Y., Okamoto, S., Okitani, R., Kawakami, T., Noguchi, S., Itoh, T., Shigeta, K., Senba, T., Matsumura, K., Nakajima, Y., Mizuno, T., Morinaga, M., Sasaki, M., Togashi, T., Oyama, M., Hata, H., Watanabe, M., Komatsu, T., Mizushima-Sugano, J., Satoh, T., Shirai, Y., Takahashi, Y., Nakagawa, K., Okumura, K., Nagase, T., Nomura, N., Kikuchi, H., Masuho, Y., Yamashita, R., Nakai, K., Yada, T., Nakamura, Y., Ohara, O., Isogai, T. and Sugano, S. (2004) Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat. Genet. 36: 40-45..
    Pařenicová, L., de Folter, S., Kieffer, M., Horner, D.S., Favalli, C., Busscher, J., Cook, H.E., Ingram, R.M., Kater, M.M., Davies, B., Angenent, G.C. and Colombo, L. (2003) Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell 15: 1538-1551.
    Paz-Ares, J. (2002) REGIA, an EU project on functional genomics of transcription factors from Arabidopsis thaliana. Comp. Funct. Genomics 3: 102-108.
    Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E. and Yanofsky, M.F. (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405: 200-203.
    Potokina, E., Sreenivasulu, N., Altschmied, L., Michalek, W. and Graner, A. (2002) Differential gene expression during seed germination in barley (Hordeum vulgare L.). Funct. Integr. Genomics 2: 28-39.
    Putney, S.D., Herlihy, W.C. and Schimmel, P. (1983) A new troponin T and cDNA clones for 13 different muscle proteins, found by shotgun sequencing. Nature 302: 718-721.
    Riechmann, J.L. and Meyerowitz, E.M. (1997) MADS domain proteins in plant development. Biol. Chem. 378: 1079-1101.
    Riechmann, J.L., Heard, J., Martin, G., Reuber, L., Jiang, C., Keddie, J., Adam, L., Pineda, O., Ratcliffe, O.J., Samaha, R.R., Creelman, R., Pilgrim, M., Broun, P., Zhang, J.Z., Ghandehari, D., Sherman, B.K. and Yu, G. (2002) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290: 2105-2110.
    Rogaev, E., Sherrington, R., Rogaeva, E. Levesque, G., Ikeda, M., Liang, Y., Chi, H., Lin, C., Holman, K. and Tsuda T. (1995) Familial Alzheimers-disease in kindreds with missense mutations in a gene on chromosome-1 related to the Alzheimers-disease type-3 gene. Nature 376: 775-778.
    Ronning, C., Stegalkina, S., Ascenzi, R. Bougri, O., Hart, A.L., Utterbach, T.R., Vanaken, S.E., Riedmuller, S.B., White, J.A., Cho, J., Pertea, G.M., Lee, Y., Karamycheva, S., Sultana, R., Tsai, J., Quackenbush, J., Griffiths, H.M., Restrepo, S., Smart, C.D., Fry, W.E., Van Der Hoeven, R., Tanksley, S., Zhang, P., Jin, H., Yamamoto, M.L., Baker, B.J. and Buell, C.R. (2003) Comparative analyses of potato expressed sequence tag libraries. Plant Physiol. 131: 419-429.
    Saha, S., Karaca, M., Jenkins, J.N., Zipf, A.E., Reddy, U.K. and Kantety, R.V. (2003) Simple sequence repeats as useful resources to study transcribed genes of cotton. Euphytica 130: 355-364.
    Sasaki, T. and Burr, B. (2000) International Rice Genome Sequencing Project: the effort to completely sequence the rice genome. Curr. Opin. Plant Biol. 3: 138–141.
    Sato, S., Nakamura, Y., Kaneko, T., Asamizu, E. and Tabata, S. (1999) Complete structure of the chloroplast genome of Arabidopsis thaliana. DNA Res. 6: 283–290.
    Savidge, B., Rounsley, S.D. and Yanofsky, M.F. (1995) Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes. Plant Cell 7: 721-733.
    Schena, M., Shalon, D., Davis, R.W. and Brown, P.O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270: 467-470.
    Schiestl, F.P. (2004) Floral evolution and pollinator mate choice in a sexually deceptive orchid. J. Evol. Biol. 17: 67-75.
    Schulze, A. and Downward, J. (2001) Navigating gene expression using microarrays – a technology review. Nat. Cell Biol. 3: E190-E195.
    Seki, M., Carninci, P., Nishiyama, Y., Hayashizaki, Y. and Shinozaki, K. (1998) High-efficiency cloning of Arabidopsis full-length cDNA by biotinylated CAP trapper. Plant J. 15: 707-720.
    Seki, M., Satou, M., Sakurai, T., Akiyama, K., Iida, K., Ishida, J., Nakajima, M., Enju, A., Narusaka, M., Fujita, M., Oono, Y., Kamei, A., Yamaguchi-Shinozaki, K. and Shinozaki, K. (2004) RIKEN Arabidopsis full-length (RAFL) cDNA and its applications for expression profiling under abiotic stress conditions. J. Exp. Bot. 55: 213-223.
    Sreenivasulu, N.,Altschmied, L., Panitz, R., Hahnel,U., Michalek, W., Weschke, W. and Wobus, U. (2002) Identification of genes specifically expressed in maternal and filial tissues of barley caryopses: a cDNA array analysis. Mol. Genet. Genomics 266: 758-767.
    Sreenivasulu, N., Altschmied, L., Radchuk, V., Gubatz, S., Wobus, U. and Weschke, W. (2004) Transcript profiles and deduced changes of metabolic pathways in maternal and filial tissues of developing barley grains. Plant J. 37: 539-553.
    Sterky, F., Regan, S., Karlsson, J., Hertzberg, M., Rohde, A., Holmberg, A., Amini, B., Bhalerao, R., Larsson, M., Villarroel, R., van Montagu, M., Sandberg, G., Olsson, O., Teeri, T.T., Boerjan, W., Gustafsson, P., Uhlen, M., Sundberg, B. and Lundeberg, J. 1998. Gene discovery in the wood-forming tissues of poplar: analysis of 5,692 expressed sequence tags. Proc. Natl. Acad. Sci. 95: 13330-13335.
    Suzuki, Y., Yoshitomo-Nakagawa, K., Maruyama, K., Suyama, A. and Sugano, S. (1997) Construction and characterization of a full length-enriched and a 5_-end-enriched cDNA library. Gene 200: 149-156.
    Theissen, G., Becker, A., Di Rosa, A., Kanno, A., Kim, J.T., Munster, T., Winter, K.U. and Saedler, H. (2000) A short history of MADS-box genes in plants. Plant Mol. Biol. 42: 115-149.
    Theissen, G., Kim, J.T. and Saedler, H. (2002) Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS box gene subfamilies in the morphological evolution of eukaryotes. J Molec. Evol. 43: 484-516.
    Theissen, G. and Saedler, H. (2001) Floral quartets. Nature 409: 469-471.
    Thiel, T., Michalek, W., Varshney, R.K. and Graner, A. (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor. Appl. Genet. 106: 411-422.
    Unseld, M., Marienfeld, J.R., Brandt, P. and Brennicke, A. (1997) The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nat. Genet. 15: 57–61.
    van der Hoeven, R., Ronning, C., Giovannoni, J., Martin, G. and Tanksley, S. (2002) Deductions about the number, organization, and evolution of genes in the tomato genome based on analysis of a large expressed sequence tag collection and selective genomic sequencing. Plant Cell 14: 1441-1456.
    Vaughton, G. and Ramsey, M. (1998) Floral display, pollinator visitation and reproductive success in the dioecious perennial herb Wurmbea dioica (Liliaceae). Oecologia 115: 93-101.
    Weigel, D. and Meyerwitz, E.M. (1994) The ABCs of floral homeotic genes. Cell 78: 203-209.
    Yu, H. and Goh, C.-J. (2000) Identification and characterization of three orchid MADS-box genes of the AP1/AGL9 subfamily during floral transition. Plant Physiol. 123: 1325-1336.
    Yu, J., Hu, S.,Wang, J.,Wong, G.K., Li, S., Liu, B., Deng, Y., Dai, L., Zhou, Y., Zhang, X., Cao, M., Liu, J., Sun, J., Tang, J., Chen, Y., Huang, X., Lin, W., Ye, C., Tong, W., Cong, L., Geng, J., Han, Y., Li, L., Li, W., Hu, G., Huang, X., Li, W., Li, J., Liu, Z., Li, L., Liu, J., Qi, Q., Liu, J., Li, L., Li, T., Wang, X., Lu, H., Wu, T., Zhu, M., Ni, P., Han, H., Dong, W., Ren, X., Feng, X., Cui, P., Li, X., Wang, H., Xu, X., Zhai, W., Xu, Z., Zhang, J., He, S., Zhang, J., Xu, J., Zhang, K., Zheng, X., Dong, J., Zeng, W., Tao, L., Ye, J., Tan, J., Ren, X., Chen, X., He, J., Liu, D., Tian, W., Tian, C., Xia, H., Bao, Q., Li, G., Gao, H., Cao, T., Wang, J., Zhao, W., Li, P., Chen, W., Wang, X., Zhang, Y., Hu, J., Wang, J., Liu, S., Yang, J., Zhang, G., Xiong, Y., Li, Z., Mao, L., Zhou, C., Zhu, Z., Chen, R., Hao, B., Zheng, W., Chen, S., Guo, W., Li, G., Liu, S., Tao, M., Wang, J., Zhu, L., Yuan, L. and Yang, H. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296: 79–92
    Zahn, L.M., Leebens-Mack, J., DePamphilis, C.W., Ma, H. and Theissen, G. (2005) To B or Not to B a flower: the role of DEFICIENS and GLOBOSA orthologs in the evolution of the angiosperms. J. Hered. 96: 225-240.
    Zik, M. and Irish, V.F. (2003) Global identification of target genes regulated by APETALA3 and PISTILLATA floral homeotic gene action. Plant Cell 15: 207-222.

    下載圖示 校內:2006-07-21公開
    校外:2008-07-21公開
    QR CODE