| 研究生: |
卓至原 Juo, Jz-Yuan |
|---|---|
| 論文名稱: |
共振四波混頻下的光學波長轉換器 Optical wavelength converter in resonant four-wave mixing processes |
| 指導教授: |
陳泳帆
Chen, Yong-Fan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 135 |
| 中文關鍵詞: | 電磁波引發透明 、四波混頻 、相位不匹配效應 |
| 外文關鍵詞: | electromagnetically induced transparency, four-wave mixing, phase-mismatch effect |
| 相關次數: | 點閱:78 下載:17 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
實驗上,我們利用基於電磁波引發透明機制的四波混頻系統,在光學密度約為 19 的共振條件下,使用兩道空間光強調變的耦合光,將一道同調光的波長從 780 奈米轉換至 795 奈米,並達到 43% 的轉換效率。除此之外,本論文也在理論上探討三種可用來製作波長轉換器的不同方式:失諧四波混頻、反向四波混頻和空間光強調 變的四波混頻,並比較各別的優缺點,與相位不匹配效應在三個不同機制下裡扮演的角色。
We first demonstrate an experimental observation of electromagnetically induced transparency based four-wave mixing (FWM) in a newly proposed scheme, where the intensity of two control fields are spatially-modulated. By using such scheme at the optical depth of 19 in cold rubidium atoms, the probe-to-signal conversion efficiency is about 43% and the wavelength is also converted from 780 nm to 795 nm. In addition, the comparison between three kinds of feasible schemes to achieve the wavelength converter are provided theoretically: detuned FWM, backward FWM and spatially-modulated FWM. Studies of how phase-mismatch effect plays in three different schemes are also presented.
[1] I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, “Long-distance teleportation of qubits at telecommunication wavelengths,” Nature, vol. 421, pp. 509– 513, Jan. 2003.
[2] S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature, vol. 437, pp. 116–120, Sept. 2005.
[3] D. E. Chang, V. Vuletić, and M. D. Lukin, “Quantum nonlinear optics —photon by photon,” Nature Photonics, vol. 8, pp. 685–694, Aug. 2014.
[4] S. Pirandola, J. Eisert, C. Weedbrook, A. Furusawa, and S. L. Braunstein, “Advances in quantum teleportation,” Nature Photonics, vol. 9, pp. 641–652, Sept. 2015.
[5] B. B. Blinov, D. L. Moehring, L.-M. Duan, and C. Monroe, “Observation of entanglement between a single trapped atom and a single photon,” Nature, vol. 428, pp. 153–157, Mar. 2004.
[6] P.Kumar, “Quantum frequency conversion, ”Optics Letters, vol.15, p.1476, Dec.1990.
[7] S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-Photon Interference Using Background-Free Quantum Frequency Conversion of Single Photons Emitted by an InAs Quantum Dot,” Physical Review Letters, vol. 109, Oct. 2012.
[8] A. S. Clark, S. Shahnia, M. J. Collins, C. Xiong, and B. J. Eggleton, “High-efficiency frequency conversion in the single-photon regime,” Optics Letters, vol. 38, p. 947, Mar. 2013.
[9] H.J.McGuinness, M.G.Raymer, C.J.McKinstrie, andS.Radic,“QuantumFrequency Translation of Single-Photon States in a Photonic Crystal Fiber,” Physical Review Letters, vol. 105, Aug. 2010.
[10] Q.Li, M.Davanço, and K.Srinivasan,“Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics,” Nature Photonics, vol. 10, pp. 406–414, Apr. 2016.
[11] C.-K. Chiu, Y.-H. Chen, Y.-C. Chen, I. A. Yu, Y.-C. Chen, and Y.-F. Chen, “Low-light- level four-wave mixing by quantum interference,” Physical Review A, vol. 89, Feb. 2014.
[12] H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, “Backward four-wave mixing in a four- level medium with electromagnetically induced transparency,” Journal of the Optical Society of America B, vol. 23, p. 718, Apr. 2006.
[13] C.-Y. Lee, B.-H. Wu, G. Wang, Y.-F. Chen, Y.-C. Chen, and I. A. Yu, “High conversion efficiency in resonant four-wave mixing processes,” Optics Express, vol. 24, p. 1008, Jan. 2016.
[14] G. Grynberg, A. Aspect, and C. Fabre, Introduction to quantum optics: from the semi-classical approach to quantized light. Cambridge, UK; New York: Cambridge University Press, 2010. OCLC: ocn610831739.
[15] M. O. Scully and M. S. Zubairy, Quantum optics. Cambridge; New York: Cambridge University Press, 1997. OCLC: 841234668.
[16] R. W. Boyd, Nonlinear optics. Amsterdam; Boston: Academic Press, 3rd ed ed., 2008.
[17] K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically in-
duced transparency,” Physical Review Letters, vol. 66, pp. 2593–2596, May 1991.
[18] S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Physical Review Letters, vol. 64, pp. 1107–1110, Mar. 1990.
[19] M. Fleischhauer and M. D. Lukin, “Dark-State Polaritons in Electromagnetically Induced Transparency,” Physical Review Letters, vol. 84, pp. 5094–5097, May 2000.
[20] A. Joshi and M. Xiao, “Generalized dark-state polaritons for photon memory in multi-level atomic media,” Physical Review A, vol. 71, Apr. 2005.
[21] C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature, vol. 409, pp. 490–493, Jan. 2001.
[22] D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of Light in Atomic Vapor,” Physical Review Letters, vol. 86, pp. 783–786, Jan. 2001.
[23] C. H. van der Wal, “Atomic Memory for Correlated Photon States,” Science, vol. 301, pp. 196–200, July 2003.
[24] B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, “Frequency domain optical parametric amplification,” Nature Communications, vol. 5, May 2014.
[25] Y.-H. Chen, M.-J. Lee, W. Hung, Y.-C. Chen, Y.-F. Chen, and I. A. Yu, “Demonstration of the Interaction between Two Stopped Light Pulses,” Physical Review Letters, vol. 108, Apr. 2012.
[26] H.-Y. Lo, P.-C. Su, and Y.-F. Chen, “Low-light-level cross-phase modulation by quantum interference,” Physical Review A, vol. 81, May 2010.
[27] Y.-F. Chen, C.-Y. Wang, S.-H. Wang, and I. A. Yu, “Low-Light-Level Cross-Phase- Modulation Based on Stored Light Pulses,” Physical Review Letters, vol. 96, Feb. 2006.
[28] C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Optics Letters, vol. 32, p. 178, Jan. 2007.
[29] D. A. Braje, V. Balić, S. Goda, G. Y. Yin, and S. E. Harris, “Frequency Mixing Using Electromagnetically Induced Transparency in Cold Atoms,” Physical Review Letters, vol. 93, Oct. 2004.
[30] R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nature Photonics, vol. 3, pp. 103–106, Jan. 2009.
[31] Z.-Y. Liu, Y.-H. Chen, Y.-C. Chen, H.-Y. Lo, P.-J. Tsai, I. A. Yu, Y.-C. Chen, and Y.- F. Chen, “Large Cross-Phase Modulations at the Few-Photon Level,” Physical Review Letters, vol. 117, Nov. 2016.
[32] A. Raczyński and J. Zaremba, “Controlled light storage in a double lambda system,” Optics Communications, vol. 209, pp. 149–154, Aug. 2002.
[33] M.-J. Lee, Y.-H. Chen, I.-C. Wang, and I. A. Yu, “EIT-based all-optical switching and cross-phase modulation under the influence of four-wave mixing,” Optics Express, vol. 20, p. 11057, May 2012.
[34] M. D. Lukin, P. R. Hemmer, M. Löffler, and M. O. Scully, “Resonant Enhancement of Parametric Processes via Radiative Interference and Induced Coherence,” Physical Review Letters, vol. 81, pp. 2675–2678, Sept. 1998.
[35] I. E. Mazets, “Adiabatic pulse propagation in coherent atomic media with the tripod level configuration,” Physical Review A, vol. 71, Feb. 2005.
[36] R.Unanyan, M.Fleischhauer, B.Shore, and K.Bergmann,“Robustcreationandphase- sensitive probing of superposition states via stimulated Raman adiabatic passage (STI- RAP) with degenerate dark states,” Optics Communications, vol. 155, pp. 144–154, Oct. 1998.
[37] N.V.Vitanov,A.A.Rangelov,B.W.Shore, and K.Bergmann,“StimulatedRamanadi- abatic passage in physics, chemistry, and beyond,” Reviews of Modern Physics, vol. 89, Mar. 2017.
[38] H. J. Metcalf and P. Van der Straten, Laser cooling and trapping. Graduate texts in contemporary physics, New York: Springer, 1999.
[39] P. Meystre, Atom optics. No. 33 in Springer series on atomic, optical, and plasma physics, New York: AIP Press/Springer, 2001.
[40] E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of Neutral Sodium Atoms with Radiation Pressure,” Physical Review Letters, vol. 59, pp. 2631– 2634, Dec. 1987.
[41] H.Metcalf,“Magneto-optical trapping and its application to helium metastables,”Journal of the Optical Society of America B, vol. 6, p. 2206, Nov. 1989.
[42] T. Walker, D. Sesko, and C. Wieman, “Collective behavior of optically trapped neutral atoms,” Physical Review Letters, vol. 64, pp. 408–411, Jan. 1990.
[43] D. W. Sesko, T. G. Walker, and C. E. Wieman, “Behavior of neutral atoms in a spontaneous force trap,” Journal of the Optical Society of America B, vol. 8, p. 946, May 1991.
[44] N. Taylor, Laser: the inventor, the Nobel laureate, and the thirty-year patent war. New York: Simon & Schuster, 2000.
[45] W.Ketterle,K.B.Davis,M.A.Joffe,A.Martin,andD.E.Pritchard,“High densities of cold atoms in a dark spontaneous-force optical trap,” Physical Review Letters, vol. 70, pp. 2253–2256, Apr. 1993.
[46] D. Gross, Y.-K. Liu, S. T. Flammia, S. Becker, and J. Eisert, “Quantum State Tomography via Compressed Sensing,” Physical Review Letters, vol. 105, Oct. 2010.
[47] U. Leonhardt, “Quantum-State Tomography and Discrete Wigner Function,” Physical Review Letters, vol. 74, pp. 4101–4105, May 1995.
[48] M. Tomás-Rodriguez and S. P. Banks, Linear, time-varying approximations to non-linear dynamical systems: with applications in control and optimization. No. 400 in Lecture notes in control and information sciences, Berlin: Springer, 2010. OCLC: ocn551394035.
[49] M.-Y. Wu, “Solvability and representation of linear time-varying systems,” International Journal of Control, vol. 31, pp. 937–945, May 1980.
[50] M.-Y. Wu, “A successive decomposition method for the solution of linear time-varying systems,” International Journal of Control, vol. 33, pp. 181–186, Jan. 1981.