簡易檢索 / 詳目顯示

研究生: 卓至原
Juo, Jz-Yuan
論文名稱: 共振四波混頻下的光學波長轉換器
Optical wavelength converter in resonant four-wave mixing processes
指導教授: 陳泳帆
Chen, Yong-Fan
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 135
中文關鍵詞: 電磁波引發透明四波混頻相位不匹配效應
外文關鍵詞: electromagnetically induced transparency, four-wave mixing, phase-mismatch effect
相關次數: 點閱:78下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 實驗上,我們利用基於電磁波引發透明機制的四波混頻系統,在光學密度約為 19 的共振條件下,使用兩道空間光強調變的耦合光,將一道同調光的波長從 780 奈米轉換至 795 奈米,並達到 43% 的轉換效率。除此之外,本論文也在理論上探討三種可用來製作波長轉換器的不同方式:失諧四波混頻、反向四波混頻和空間光強調 變的四波混頻,並比較各別的優缺點,與相位不匹配效應在三個不同機制下裡扮演的角色。

    We first demonstrate an experimental observation of electromagnetically induced transparency based four-wave mixing (FWM) in a newly proposed scheme, where the intensity of two control fields are spatially-modulated. By using such scheme at the optical depth of 19 in cold rubidium atoms, the probe-to-signal conversion efficiency is about 43% and the wavelength is also converted from 780 nm to 795 nm. In addition, the comparison between three kinds of feasible schemes to achieve the wavelength converter are provided theoretically: detuned FWM, backward FWM and spatially-modulated FWM. Studies of how phase-mismatch effect plays in three different schemes are also presented.

    摘要 i Abstract ii 誌謝 iii Acknowledgements iv Table of Contents v List of Tables vii List of Figures viii Chapter 1. Introduction 1 1.1. Review .................................... 1 1.2. Motivation................................... 2 Chapter 2. Theoretical model 3 2.1. Thesemi-classical approach ......................... 3 2.1.1. TheinteractionHamiltonian ..................... 4 2.1.2. Rotatingwaveapproximation..................... 5 2.1.3. Optical-Blochequation........................ 6 2.1.4. Maxwell-Schrödingerequation.................... 7 2.2. Two-level system ............................... 10 2.2.1. Mathematical description....................... 10 2.2.2. Saturation absorption spectroscopy.................. 13 2.2.3. Laser frequency stabilization..................... 17 2.3. Electromagnetically induced transparency . . . . . . . . . . . . . . . 18 2.3.1. General description.......................... 18 2.3.2. slowlight and lightstorage....................... 24 2.4. Four-wave mixing processes ......................... 26 2.4.1. General description.......................... 26 2.4.2. Phase-mismatch effect ........................ 32 2.4.3. Detunedfour-wave mixing ...................... 39 2.4.4. Spatially-modulated four-wave mixing . . . . . . . . . . . . . . . . 51 2.4.5. Backward four-wave mixing ..................... 57 Chapter 3. Experimental system and setup 62 3.1. Magneto-optical trap ............................. 62 3.2. Electromagnetically induced transparency . . . . . . . . . . . . . . . . 67 3.3. Phase-mismatch four-wave mixing...................... 71 3.4. Spatially-modulated four-wave mixing process . . . . . . . . . . . . 76 Chapter 4. Experimental result and discussion 78 4.1. Electromagnetically induced transparency . . . . . . . . . . . . . . . . 79 4.2. Phase-mismatch four-wave mixing...................... 81 4.3. Spatially-modulated four-wave mixing process . . . . . . . . . . . . 87 Chapter 5. Conclusion and outlook 91 References 92 Appendix A. Characterization of Gaussian beams 96 A.1. General description.............................. 96 A.2. Rotating knife-edge method ......................... 101 A.3. Measurement of a Gaussian beam ...................... 102 A.3.1. Waist size............................... 102 A.3.2. Beam divergence........................... 103 A.3.3. Jitterandwanderoftheopticalpath................. 104 Appendix B. Modulation of the spatial intensity of laser fields 105 B.1. General description.............................. 106 B.2. Simulation method .............................. 110 B.3. Simulation results............................... 112 B.3.1. Modulation requirement for control fields . . . . . . . . . . . . . . 112 B.3.2. Intensity-mismatch in three-dimension. . . . . . . . . . . . . . . . 115 Appendix C. Photon-switching effect 117 C.1. 780nmto795nm .............................. 117 C.1.1. DetunedFWM ............................ 121 C.1.2. Spatially-modulatedFWM...................... 122 C.1.3. BackwardFWM ........................... 123 C.2. 780nmto780nm .............................. 125 C.2.1. DetunedFWM ............................ 127 C.2.2. Spatially-modulatedFWM...................... 128 C.2.3. BackwardFWM ........................... 129 Appendix D. Derivation of analytical solutions 131 D.1. State transition matrix ............................ 131 D.2. Solutions of the backward phase-dependent double-Λ system . . . . . . . 134 D.3. Solutions of the spatially-modulated four-wave mixing system . . . . . . . 135

    [1] I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, “Long-distance teleportation of qubits at telecommunication wavelengths,” Nature, vol. 421, pp. 509– 513, Jan. 2003.
    [2] S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature, vol. 437, pp. 116–120, Sept. 2005.
    [3] D. E. Chang, V. Vuletić, and M. D. Lukin, “Quantum nonlinear optics —photon by photon,” Nature Photonics, vol. 8, pp. 685–694, Aug. 2014.
    [4] S. Pirandola, J. Eisert, C. Weedbrook, A. Furusawa, and S. L. Braunstein, “Advances in quantum teleportation,” Nature Photonics, vol. 9, pp. 641–652, Sept. 2015.
    [5] B. B. Blinov, D. L. Moehring, L.-M. Duan, and C. Monroe, “Observation of entanglement between a single trapped atom and a single photon,” Nature, vol. 428, pp. 153–157, Mar. 2004.
    [6] P.Kumar, “Quantum frequency conversion, ”Optics Letters, vol.15, p.1476, Dec.1990.
    [7] S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, “Two-Photon Interference Using Background-Free Quantum Frequency Conversion of Single Photons Emitted by an InAs Quantum Dot,” Physical Review Letters, vol. 109, Oct. 2012.
    [8] A. S. Clark, S. Shahnia, M. J. Collins, C. Xiong, and B. J. Eggleton, “High-efficiency frequency conversion in the single-photon regime,” Optics Letters, vol. 38, p. 947, Mar. 2013.
    [9] H.J.McGuinness, M.G.Raymer, C.J.McKinstrie, andS.Radic,“QuantumFrequency Translation of Single-Photon States in a Photonic Crystal Fiber,” Physical Review Letters, vol. 105, Aug. 2010.
    [10] Q.Li, M.Davanço, and K.Srinivasan,“Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics,” Nature Photonics, vol. 10, pp. 406–414, Apr. 2016.
    [11] C.-K. Chiu, Y.-H. Chen, Y.-C. Chen, I. A. Yu, Y.-C. Chen, and Y.-F. Chen, “Low-light- level four-wave mixing by quantum interference,” Physical Review A, vol. 89, Feb. 2014.
    [12] H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, “Backward four-wave mixing in a four- level medium with electromagnetically induced transparency,” Journal of the Optical Society of America B, vol. 23, p. 718, Apr. 2006.
    [13] C.-Y. Lee, B.-H. Wu, G. Wang, Y.-F. Chen, Y.-C. Chen, and I. A. Yu, “High conversion efficiency in resonant four-wave mixing processes,” Optics Express, vol. 24, p. 1008, Jan. 2016.
    [14] G. Grynberg, A. Aspect, and C. Fabre, Introduction to quantum optics: from the semi-classical approach to quantized light. Cambridge, UK; New York: Cambridge University Press, 2010. OCLC: ocn610831739.
    [15] M. O. Scully and M. S. Zubairy, Quantum optics. Cambridge; New York: Cambridge University Press, 1997. OCLC: 841234668.
    [16] R. W. Boyd, Nonlinear optics. Amsterdam; Boston: Academic Press, 3rd ed ed., 2008.
    [17] K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically in-
    duced transparency,” Physical Review Letters, vol. 66, pp. 2593–2596, May 1991.
    [18] S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Physical Review Letters, vol. 64, pp. 1107–1110, Mar. 1990.
    [19] M. Fleischhauer and M. D. Lukin, “Dark-State Polaritons in Electromagnetically Induced Transparency,” Physical Review Letters, vol. 84, pp. 5094–5097, May 2000.
    [20] A. Joshi and M. Xiao, “Generalized dark-state polaritons for photon memory in multi-level atomic media,” Physical Review A, vol. 71, Apr. 2005.
    [21] C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature, vol. 409, pp. 490–493, Jan. 2001.
    [22] D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of Light in Atomic Vapor,” Physical Review Letters, vol. 86, pp. 783–786, Jan. 2001.
    [23] C. H. van der Wal, “Atomic Memory for Correlated Photon States,” Science, vol. 301, pp. 196–200, July 2003.
    [24] B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, “Frequency domain optical parametric amplification,” Nature Communications, vol. 5, May 2014.
    [25] Y.-H. Chen, M.-J. Lee, W. Hung, Y.-C. Chen, Y.-F. Chen, and I. A. Yu, “Demonstration of the Interaction between Two Stopped Light Pulses,” Physical Review Letters, vol. 108, Apr. 2012.
    [26] H.-Y. Lo, P.-C. Su, and Y.-F. Chen, “Low-light-level cross-phase modulation by quantum interference,” Physical Review A, vol. 81, May 2010.
    [27] Y.-F. Chen, C.-Y. Wang, S.-H. Wang, and I. A. Yu, “Low-Light-Level Cross-Phase- Modulation Based on Stored Light Pulses,” Physical Review Letters, vol. 96, Feb. 2006.
    [28] C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, “Strong relative intensity squeezing by four-wave mixing in rubidium vapor,” Optics Letters, vol. 32, p. 178, Jan. 2007.
    [29] D. A. Braje, V. Balić, S. Goda, G. Y. Yin, and S. E. Harris, “Frequency Mixing Using Electromagnetically Induced Transparency in Cold Atoms,” Physical Review Letters, vol. 93, Oct. 2004.
    [30] R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nature Photonics, vol. 3, pp. 103–106, Jan. 2009.
    [31] Z.-Y. Liu, Y.-H. Chen, Y.-C. Chen, H.-Y. Lo, P.-J. Tsai, I. A. Yu, Y.-C. Chen, and Y.- F. Chen, “Large Cross-Phase Modulations at the Few-Photon Level,” Physical Review Letters, vol. 117, Nov. 2016.
    [32] A. Raczyński and J. Zaremba, “Controlled light storage in a double lambda system,” Optics Communications, vol. 209, pp. 149–154, Aug. 2002.
    [33] M.-J. Lee, Y.-H. Chen, I.-C. Wang, and I. A. Yu, “EIT-based all-optical switching and cross-phase modulation under the influence of four-wave mixing,” Optics Express, vol. 20, p. 11057, May 2012.
    [34] M. D. Lukin, P. R. Hemmer, M. Löffler, and M. O. Scully, “Resonant Enhancement of Parametric Processes via Radiative Interference and Induced Coherence,” Physical Review Letters, vol. 81, pp. 2675–2678, Sept. 1998.
    [35] I. E. Mazets, “Adiabatic pulse propagation in coherent atomic media with the tripod level configuration,” Physical Review A, vol. 71, Feb. 2005.
    [36] R.Unanyan, M.Fleischhauer, B.Shore, and K.Bergmann,“Robustcreationandphase- sensitive probing of superposition states via stimulated Raman adiabatic passage (STI- RAP) with degenerate dark states,” Optics Communications, vol. 155, pp. 144–154, Oct. 1998.
    [37] N.V.Vitanov,A.A.Rangelov,B.W.Shore, and K.Bergmann,“StimulatedRamanadi- abatic passage in physics, chemistry, and beyond,” Reviews of Modern Physics, vol. 89, Mar. 2017.
    [38] H. J. Metcalf and P. Van der Straten, Laser cooling and trapping. Graduate texts in contemporary physics, New York: Springer, 1999.
    [39] P. Meystre, Atom optics. No. 33 in Springer series on atomic, optical, and plasma physics, New York: AIP Press/Springer, 2001.
    [40] E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of Neutral Sodium Atoms with Radiation Pressure,” Physical Review Letters, vol. 59, pp. 2631– 2634, Dec. 1987.
    [41] H.Metcalf,“Magneto-optical trapping and its application to helium metastables,”Journal of the Optical Society of America B, vol. 6, p. 2206, Nov. 1989.
    [42] T. Walker, D. Sesko, and C. Wieman, “Collective behavior of optically trapped neutral atoms,” Physical Review Letters, vol. 64, pp. 408–411, Jan. 1990.
    [43] D. W. Sesko, T. G. Walker, and C. E. Wieman, “Behavior of neutral atoms in a spontaneous force trap,” Journal of the Optical Society of America B, vol. 8, p. 946, May 1991.
    [44] N. Taylor, Laser: the inventor, the Nobel laureate, and the thirty-year patent war. New York: Simon & Schuster, 2000.
    [45] W.Ketterle,K.B.Davis,M.A.Joffe,A.Martin,andD.E.Pritchard,“High densities of cold atoms in a dark spontaneous-force optical trap,” Physical Review Letters, vol. 70, pp. 2253–2256, Apr. 1993.
    [46] D. Gross, Y.-K. Liu, S. T. Flammia, S. Becker, and J. Eisert, “Quantum State Tomography via Compressed Sensing,” Physical Review Letters, vol. 105, Oct. 2010.
    [47] U. Leonhardt, “Quantum-State Tomography and Discrete Wigner Function,” Physical Review Letters, vol. 74, pp. 4101–4105, May 1995.
    [48] M. Tomás-Rodriguez and S. P. Banks, Linear, time-varying approximations to non-linear dynamical systems: with applications in control and optimization. No. 400 in Lecture notes in control and information sciences, Berlin: Springer, 2010. OCLC: ocn551394035.
    [49] M.-Y. Wu, “Solvability and representation of linear time-varying systems,” International Journal of Control, vol. 31, pp. 937–945, May 1980.
    [50] M.-Y. Wu, “A successive decomposition method for the solution of linear time-varying systems,” International Journal of Control, vol. 33, pp. 181–186, Jan. 1981.

    下載圖示 校內:2018-09-01公開
    校外:2018-09-01公開
    QR CODE