| 研究生: |
蔡翔任 Cai, Xiang-Ren |
|---|---|
| 論文名稱: |
低複雜度球狀解碼運用在廣義空間調變 Low-Complexity Sphere Decoding for Generalized Spatial Modulation |
| 指導教授: |
張名先
Chang, Ming-Xian |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 38 |
| 中文關鍵詞: | 廣義空間調變 、天線之間互相干擾 、球狀解碼 、多天線多輸入多輸出 |
| 外文關鍵詞: | Spatial Modulation, Generalized Spatial Modulation, sphere decodeing |
| 相關次數: | 點閱:205 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
廣義空間調變(Generalized Spatial Modulation),是一種在多輸入多輸出(Multi-Input Multi-Output)系統下的調變方式,是近年比較熱門拿來運用在多天線輸出(MIMO)架構上的技術,此作法在每一個時間點,不啟動全部的天線在傳輸資料,而是只有特定一組的天線組合會啟動來發射訊號,由此一來,在接收端就不需要太多的射頻 (Radio Frequency)電路,而相比於多天線輸入多天線輸出系統,它也能解決通道間干擾(Inter-Channel Interference)的問題。
在一般的通訊系統中常見的解調方法有許多種,像是ML(maximum likelihood)或MMSE(minimum mean squared error)等等,而ML解調方法雖然是所有解調方法中錯誤率最好的,但是它的複雜度也是所有方法中最高的。而球體解碼也是一種應用於MIMO中的解調方法,透過持續的降低搜索半徑,去大大的減少所要搜尋的點,同時錯誤率還能跟ML解一樣好,是一種非常有效率的解調方式,然而它的複雜度還是很高。
在本篇論文中,我會針對在GSM架構下,提出一種較低複雜度版本的球狀解碼,排序球狀解碼(S-SD),在降低複雜度的同時,也不會犧牲掉太多的錯誤率,其原理為先透過排序天線演算法,求出當次傳輸每一組天線組合的機率大小,再去做排序,再根據排序的結果去修剪樹的大小,同時也參照可靠值去決定要搜尋幾組天線組合。
Generalized Spatial Modulation (GSM) is a modulation method under the Multi-Input Multi-Output (MIMO) system. It is a popular technology used in the MIMO architecture ,in recent years. The principle of this method is that at each time, not all antennas are activated to transmit data, but only a specific set of antenna combinations will be activated to transmit signals. As a result, there is no need for too many radio frequency circuits at the receiver. Compared with the MIMO system, we also have to solve the interference among antennas.
There are many detection methods in the receiver, such as the maximum likelihood (ML)detection and minimum mean squared error (MMSE) detection, etc. Although the ML detection method has the optimal performance, its complexity is also quite high.The sphere decoding (SD) is an efficient method for the MIMO system,and it can efficiently attain the ML detection, although its complexity is increased with decreasing signal-to-noise ration (SNR).
In this thesis, we propose a lower complexity version of the SD algorithm under the GSM architecture. The proposed algorithm is expected to reduce the complexity and maintain efficient performance.
[1] Salini. S. Pillai , Dhanya. S, Basil K Jeemon , "Performance Comparison of Multicast MIMO Systems Employing Spatial Modulation and Coded Spatial Modulation in Fading Channels"2017 International Conference on Intelligent Instrumentation and Control Technologies (ICICICT)
[2] Y. Samayoa, M. Kock, H. Blume and J. Ostermann, "Low-Cost Channel Sounder Design Based on Software-Defined Radio and OFDM," IEEE Int .Conf. Commun, Chicago, IL, USA, 2018, pp. 1-5
[3] Shuaishuai Guo, Haixia Zhang, Peng Zhang, Shuping Dang, Cong Liang, and Mohamed-Slim Alouini "Signal Shaping for Generalized Spatial Modulation
and Generalized Quadrature Spatial Modulation"IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 18, NO. 8, AUGUST 2019
[4] Georges Kaddoum and Ebrahim Soujeri "On the Comparison Between Code
Index Modulation and Spatial Modulation Techniques" 2015 International Conference on Information and Communication Technology Research
[5] Yuan Wang, Wenlong Liu, and Minglu Jin, Sungjeen Jang, Jae Moung Kim"FQAM/FPSK Modulation for Spatial Modulation Systems"978-1-5090-1325-8/16/$31.00 ©2016 IEEE
[6] Taissir Y. Elganimi, Fatima I. Alwerfly, and Akram A. Marseet "Distributed Generalized Spatial Modulation for Relay Networks " 978-1-7281-7206-4/20/$31.00 ©2020 IEEE
[7] Goutham Simha G D*, Shriharsha Koila, Raghavendra M A N S*, Udupi Sripati*, " Modified Signal Design for Multistream Spatial Modulation over Spatially Correlated Channels"978-1-5090-6367-3/17/$31.00 ©2017 IEEE
[8] I-WEI LAI, JHIH-WEI SHIH, CHE-WEI LEE1, HSU-HSUAN TU1,JUNG-CHUN CHI2 "Spatial Permutation Modulation for Multiple-Input MultipleOutput (MIMO) Systems " Digital Object Identifier 10.1109/ACCESS.2019.2918710
[9] Xiao Jun, Guan Diyuan, Wang Zengye “Research of Improved Sphere Decoding Algorithm” 978-1-7281-0106-4/19/$31.00 c 2019 IEEE
[10] Yue Xiao, Zongfei Yang, Lilin Dan, Ping Yang, Lu Yin, and Wei Xiang,” Low-Complexity Signal Detection for Generalized Spatial Modulation” IEEE COMMUNICATIONS LETTERS, VOL. 18, NO. 3, MARCH 2014
[11] LI Shi-Ping, WANG Long , CHEN Fang-Chao “Ordered Sphere Decoding Detection Algorithm for MIMO Systems” 978-1-4577-2074-1/12/$26.00 c 2012 IEEE.
[12] Kyungchun Lee,” Doubly Ordered Sphere Decoding for Spatial Modulatio” 1558-2558 © 2015 IEEE.
[13] F. Wang, Y. Xiong, X. Yang, “Approximate ML Detection Based on MMSE for MIMO Systems,” Progress In Electromagnetics Research Symposium (PIERS) online, vol. 3, no. 4, pp. 475-480, Mar. 2007.
[14] X. Wu, J. S. Thompson, “Accelerated sphere decoding for multipleinput multiple-output systems using an adaptive statistical threshold,” IET signal processing, vol. 3, no. 6, pp. 433-444, Nov. 2009.
校內:2024-07-10公開