| 研究生: |
張昱凡 Zhang, Yu-Fan |
|---|---|
| 論文名稱: |
第一原理探討多主元素碳化物與碳氮化物之組成與機械性質 Study of composition and mechanical property of multi-principal element carbides and carbonitrides by first-principles calculation |
| 指導教授: |
許文東
Hsu, Wen-Dung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 第一原理計算 、多主元素陶瓷 、碳化物 、碳氮化物 、機械性質 |
| 外文關鍵詞: | first-principles calculation, multi-principal element ceramic, carbide, carbonitride, mechanical property |
| 相關次數: | 點閱:140 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以基於密度泛函理論的VASP第一原理計算,研究多主元素碳化物和碳氮化物之組成與機械性質,目的搜尋應用於高耐磨耗、低摩擦係數之硬質薄膜材料。研究發現IB-VIB族過渡金屬元素是這些多主元素陶瓷的候選元素,對元素隨機分佈的多元素結構進行結構優化、熱力學、機械性質與電荷特性計算。透過幾個經驗與理論歸納公式評估耐磨耗與低摩擦特性。結果顯示這些化合物之合成過程為一吸熱過程,且這些多元素陶瓷為符合立方體結構機械穩定性之脆性陶瓷材料。不同成份組合的MPEC(N)s展現了不同的機械性質,從電荷分析結果推論差異可能源自陶瓷中原子電荷交換變化,以及元素族群價電子組態差異之影響。透過研究不同成份組合之機械性質與相穩定,本研究可做為一個硬質薄膜材料之設計與選擇的參考。
Composition and mechanical properties of multi-principal element carbides and carbonitrides are studied by first-principles calculations via VASP based on density functional theory. The main goal is to survey compositions of multi-principal element carbides (MPECs) and carbonitrides (MPECNs) for high wear resistance and low friction applications. It is found out that transition metals elements of IB - VIB group are promising constituent elements of these multi-principal element ceramics. Structure optimization, thermodynamics, mechanical property, and electronic property calculations are performed on multi-principal element structure with random elements distribution. Wear resistance and low friction property are estimated through several empirical and theoretical criteria. The results indicate that the formation of MPEC(N)s is an endothermic process. Also, these MPEC(N)s are brittle material with mechanical stability of cubic structure. The different composition of MPEC(N)s show different mechanical property which may be due to the electron transfer between atoms and atomic property difference in between element groups.
1. Cantor, B., et al., Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A, 2004. 375: p. 213-218.
2. Yeh, J.W., et al., Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 2004. 6(5): p. 299-303.
3. Senkov, O.N., et al., Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 2011. 19(5): p. 698-706.
4. Wang, W.-R., et al., Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics, 2012. 26: p. 44-51.
5. Gao, M.C., et al., High-entropy alloys. Cham: Springer International Publishing, 2016.
6. Oses, C., C. Toher, and S. Curtarolo, High-entropy ceramics. Nature Reviews Materials, 2020. 5(4): p. 295-309.
7. Balasubramanian, K., S.V. Khare, and D. Gall, Valence electron concentration as an indicator for mechanical properties in rock salt structure nitrides, carbides and carbonitrides. Acta Materialia, 2018. 152: p. 175-185.
8. Troparevsky, M.C., et al., Criteria for predicting the formation of single-phase high-entropy alloys. Physical Review X, 2015. 5(1): p. 011041.
9. Sarker, P., et al., High-entropy high-hardness metal carbides discovered by entropy descriptors. Nature communications, 2018. 9(1): p. 1-10.
10. Ye, B., et al., First‐principles study, fabrication, and characterization of (Hf0. 2Zr0. 2Ta0. 2Nb0. 2Ti0. 2) C high‐entropy ceramic. Journal of the American Ceramic Society, 2019. 102(7): p. 4344-4352.
11. Yang, Y., et al., Structural, mechanical and electronic properties of (TaNbHfTiZr) C high entropy carbide under pressure: Ab initio investigation. Physica B: Condensed Matter, 2018. 550: p. 163-170.
12. Jiang, S., et al., Elastic and thermodynamic properties of high entropy carbide (HfTaZrTi) C and (HfTaZrNb) C from ab initio investigation. Ceramics International, 2020. 46(10): p. 15104-15112.
13. Harrington, T.J., et al., Phase stability and mechanical properties of novel high entropy transition metal carbides. Acta Materialia, 2019. 166: p. 271-280.
14. Dusza, J., et al., Microstructure of (Hf-Ta-Zr-Nb) C high-entropy carbide at micro and nano/atomic level. Journal of the European Ceramic Society, 2018. 38(12): p. 4303-4307.
15. Liu, D., et al., Phase evolution and properties of (VNbTaMoW) C high entropy carbide prepared by reaction synthesis. Journal of the European Ceramic Society, 2020. 40(8): p. 2746-2751.
16. Zhang, Q., et al., Understanding the electronic structure, mechanical properties, and thermodynamic stability of (TiZrHfNbTa) C combined experiments and first-principles simulation. Journal of Applied Physics, 2019. 126(2): p. 025101.
17. Chen, R., et al., Microstructure, mechanical and tribological properties of TiCN nanocomposite films deposited by DC magnetron sputtering. Surface and coatings technology, 2011. 205(21-22): p. 5228-5234.
18. Han, X., et al., Microstructure and characterization of (Ti, V, Nb, Ta)(C, N) high-entropy ceramic. Ceramics International, 2021. 47(24): p. 35105-35110.
19. Dippo, O.F., et al., Bulk high-entropy nitrides and carbonitrides. Scientific reports, 2020. 10(1): p. 1-11.
20. Peng, Z., et al., Novel refractory high-entropy ceramics: Transition metal carbonitrides with superior ablation resistance. Corrosion Science, 2021. 184: p. 109359.
21. Sholl, D. and J.A. Steckel, Density functional theory: a practical introduction. 2011: John Wiley & Sons.
22. Myers, W. and W. Swiatecki, Nuclear properties according to the Thomas-Fermi model. Nuclear Physics A, 1996. 601(2): p. 141-167.
23. Hohenberg, P. and W. Kohn, Inhomogeneous electron gas. Physical review, 1964. 136(3B): p. B864.
24. Kohn, W. and L.J. Sham, Self-consistent equations including exchange and correlation effects. Physical review, 1965. 140(4A): p. A1133.
25. Dudarev, S.L., et al., Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+ U study. Physical Review B, 1998. 57(3): p. 1505.
26. Lee, I.-H. and R.M. Martin, Applications of the generalized-gradient approximation to atoms, clusters, and solids. Physical Review B, 1997. 56(12): p. 7197.
27. Kittel, C., Introduction to solid state physics. American Journal of Physics, 1967. 35(6): p. 547-548.
28. Wu, Z.-j., et al., Crystal structures and elastic properties of superhard Ir N 2 and Ir N 3 from first principles. Physical Review B, 2007. 76(5): p. 054115.
29. Pokluda, J., et al., Ab initio calculations of mechanical properties: Methods and applications. Progress in Materials Science, 2015. 73: p. 127-158.
30. Zhang, X., W. Gui, and Q. Zeng, First-principles study of structural, mechanical, and thermodynamic properties of cubic Y2O3 under high pressure. Ceramics International, 2017. 43(3): p. 3346-3355.
31. Born, M. On the stability of crystal lattices. I. in Mathematical Proceedings of the Cambridge Philosophical Society. 1940. Cambridge University Press.
32. Pugh, S., XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1954. 45(367): p. 823-843.
33. Pfrommer, B.G., et al., Relaxation of crystals with the quasi-Newton method. Journal of Computational Physics, 1997. 131(1): p. 233-240.
34. Rahman, M.A., M.Z. Rahaman, and M.A. Rahman, The structural, elastic, electronic and optical properties of MgCu under pressure: A first-principles study. International Journal of Modern Physics B, 2016. 30(27): p. 1650199.
35. Debnárová, S., et al., The tribological properties of short range ordered WBC protective coatings prepared by pulsed magnetron sputtering. Surface and Coatings Technology, 2019. 357: p. 364-371.
36. Oliver, W.C. and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of materials research, 1992. 7(6): p. 1564-1583.
37. Teter, D.M., Computational alchemy: the search for new superhard materials. MRS bulletin, 1998. 23(1): p. 22-27.
38. Chen, X.-Q., et al., Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics, 2011. 19(9): p. 1275-1281.
39. Musil, J., et al., Relationships between hardness, Young's modulus and elastic recovery in hard nanocomposite coatings. Surface and Coatings Technology, 2002. 154(2-3): p. 304-313.
40. Leyland, A. and A. Matthews, On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour. Wear, 2000. 246(1-2): p. 1-11.
41. Musil, J., et al., Tribological and mechanical properties of nanocrystalline-TiC/a-C nanocomposite thin films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2010. 28(2): p. 244-249.
42. Tsui, T., et al., Nanoindentation and nanoscratching of hard carbon coatings for magnetic disks. MRS Online Proceedings Library (OPL), 1995. 383.
43. Riedo, E. and H. Brune, Young modulus dependence of nanoscopic friction coefficient in hard coatings. Applied Physics Letters, 2003. 83(10): p. 1986-1988.
44. Sandeep, C.S. and K. Senetakis, Effect of Young’s modulus and surface roughness on the inter-particle friction of granular materials. Materials, 2018. 11(2): p. 217.
45. Makkonen, L., A thermodynamic model of sliding friction. AIP Advances, 2012. 2(1): p. 012179.
46. Moore, A. and W.M. Tegart, Relation between friction and hardness. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1952. 212(1111): p. 452-458.
47. Rabinowicz, E., Influence of surface energy on friction and wear phenomena. Journal of Applied Physics, 1961. 32(8): p. 1440-1444.
48. Ni, W., et al., Effects of the ratio of hardness to Young’s modulus on the friction and wear behavior of bilayer coatings. Applied physics letters, 2004. 85(18): p. 4028-4030.
49. Musil, J., et al., Relationship between mechanical properties and coefficient of friction of sputtered aC/Cu composite thin films. Diamond and related materials, 2008. 17(11): p. 1905-1911.
50. Kroese, D.P., et al., Why the Monte Carlo method is so important today. Wiley Interdisciplinary Reviews: Computational Statistics, 2014. 6(6): p. 386-392.
51. Perdew, J.P., K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Physical review letters, 1996. 77(18): p. 3865.
52. Momma, K. and F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 2011. 44(6): p. 1272-1276.
53. Bader, R.F., Atoms in molecules. Accounts of Chemical Research, 1985. 18(1): p. 9-15.
54. Henkelman, G., A. Arnaldsson, and H. Jónsson, A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science, 2006. 36(3): p. 354-360.
55. Sanville, E., et al., Improved grid‐based algorithm for Bader charge allocation. Journal of computational chemistry, 2007. 28(5): p. 899-908.
56. Tang, W., E. Sanville, and G. Henkelman, A grid-based Bader analysis algorithm without lattice bias. Journal of Physics: Condensed Matter, 2009. 21(8): p. 084204.
57. Yu, M. and D.R. Trinkle, Accurate and efficient algorithm for Bader charge integration. The Journal of chemical physics, 2011. 134(6): p. 064111.
58. Jain, A., et al., Formation enthalpies by mixing GGA and GGA+ U calculations. Physical Review B, 2011. 84(4): p. 045115.
59. De Jong, M., et al., Charting the complete elastic properties of inorganic crystalline compounds. Scientific data, 2015. 2(1): p. 1-13.
60. Chang, S.-Y., S.-Y. Lin, and Y.-C. Huang, Microstructures and mechanical properties of multi-component (AlCrTaTiZr) NxCy nanocomposite coatings. Thin Solid Films, 2011. 519(15): p. 4865-4869.
61. Delin, A., et al., Optical properties of the group-IVB refractory metal compounds. Physical Review B, 1996. 54(3): p. 1673.
62. Pauling, L., The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms. Journal of the American Chemical Society, 1932. 54(9): p. 3570-3582.