簡易檢索 / 詳目顯示

研究生: 廖翊廷
Lai, Yi-ting
論文名稱: 應用生物刺激及菌種添加之離場土耕法整治總石油碳氫化物污染土壤之模場研究
Ex-situ landfarming bioremediation of TPH contaminated soil with biostimulation and bioaugmentation
指導教授: 鄭幸雄
Cheng, Sheng-Shung
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 181
中文關鍵詞: 離場生物刺激生物添加生物復育土耕法
外文關鍵詞: ex-situ, biostimulation, bioaugmention, bioremediation, land farming
相關次數: 點閱:104下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是以離場整治之模場土堆作為研究內容,再配合實驗室批次試驗,探討利用土耕法(landfarming)配合柱塞回流法(Plug flow reaction & Recirculation seeding)之觀念與生物添加(bioaugmentation)及生物刺激(biostimulation)之方法應用整治總石油碳氫化合物污染之土壤之效果。研究中總共分成兩個離場模場土堆(ex-situ biopile)與一個實驗室批次試驗。
    離場模場之一:每土堆為10m3共分成5堆,分別為:(1) 添加生物界面活性劑(BS);(2) 添加BH medium (NE);(3)添加具有降解柴油之功能的菌株 (BA);(4)添加BA和BS (BAS);(5)只添加水而不做任何添加(CT)。採用額外添加柴油方式進行復育,各堆的起始TPHC10~C28的範圍約8,400 mg/kg dry soil~10,270 mg/kg dry soil,經過14天只有BAS堆濃度在5,000 mg/kg dry soil以上,其餘的都在2,200 mg/kg dry soil ~3,500 mg/kg dry soil之間;經過24天後,各堆TPHC10~C28值都在1,500 mg/kg dry soil以下,甚至有低於法規標準的1,000 mg/kg dry soil,去除率高達90%。在24天以後各堆TPHC10~C28即維持在1,000 mg/kg dry soil的殘餘濃度。由於污染土壤受污染已有一段時間,因此原生菌種已有很強的適應環境能力,且具有多樣性與豐富性,造成每堆效果沒有明顯的差異。
    離場模場之二:採用原污染土壤作為復育對象,利用土耕生物堆法結合柱塞回流法進行離場整治。研究中採用兩種TPHC10~40污染濃度之土壤分別為3,500~4,500 mg/kg dry soil及5,500~9,000 mg/kg dry soil,其各簡稱為S系列及T系列。S系列及T系列土堆分別各4堆,每堆為高約2 m之20 m3土堆,其中各含一堆控制組(S0 & T0),即只添加水分及翻堆之土堆。土壤復育的策略有:添加營養鹽、施灑第二次界面活性劑、第二次菌劑及輔助碳源。在復育過程中兩系列的TPH去除效果分別與其控制組沒有明顯差別。但因為污染物的比例不同,因此S系列初期去除效果比T系列佳。
    實驗室規模:其實驗因子為(1)柴油及燃料油添加的比例、(2)生物界面活性劑(Rhamnolipid)的添加(生物刺激,biostimulation)及(3)生物菌劑的添加(生物添加,bioaugmentation)。啟動後第六天各組總異營菌(total heterotrophic bacteria ,THB)均有大幅增加,漲幅4至10倍不等,柴油比例越高其漲幅就越大,且有生物添加的反應瓶,其菌數也比較多。柴油分解菌(Diesel aerobic bacteria,DAB)於第6天也是有大幅增加的情形,但是以35%柴油及65%燃料油組成的污染物在沒有生物添加與生物刺激下及全部添加燃料油的組別則有遲滯或者減少的現象。經過114天復育之後,隨著燃料油比例的增加,其去除率有下降的趨勢,但是生物添加及生物刺激則沒有明顯的差異。本研究提供離場模場規模整治經驗作為基礎,期能在未來可應用於現場整治。

    The content of this study were main researched on biopiles of ex-situ bioremediation and collocated experimental batch study of laboratory to evaluate feasibility of using land farming associated “Plug flow reaction and Recirculation seeding” with bioaugmentation and biostimulation bioremedied total petroleum hydrocarbon (TPH)-contaminated-soil.This study covered two sites of ex-situ bioremediation and one of experimental batch study of laboratory.
    One of the sites of ex-situ bioremediation:This research adopts method of adding diesel oil , biostimulation and bioaugmentation to simulate the way of treating biopile .In the study, experiment factors divided into five parts – bioaugmentation biopile (BA);biostumulation biopile (BS);BA +BS (BAS);nutrient enhance biopile (NE) and control biopile (CT) , and each of them operated in the cubic of 3m (L) *3m (W) *1m (H) soil’s biopile.In the study, the range of initial TPHC10~C28 in each biopiles is 8,400 mg/kg dry soil to 10,270 mg/kg dry soil. Through 14 days, only BAS biopiles is above 5,000 mg/kg dry soil,and the other are between 2,200 mg/kg dry soil and 3,500 mg/kg dry soil. After 24 days, The concentration of TPHC10~C28 of each biopile is under 1,500 mg/kg dry soil, even there is lower than the regulation standard 1,000 mg/kg dry soil, and the removal is up to 90%. After 24 days, the concentration of TPHC10~C28 of each biopile is promptly maintained 1,000 mg/kg dry soil. The result of bacteria measured indicate the originally bacterials included this research adding bacteria cluster, and the total colony counting of Originally bacterial reached 108 CFU/g dry soil. As a result of the polluted soil contaminated for some time , originally bacteria hade grown and already had very strong environmental ability of adaptation. So it caused each biopile of result in this research not to have obvious difference, and CT’s biopile could be degraded rapidly.
    The other site of ex-situ bioremediation:In the present study, 100m3 of petroleum-oil contaminated soil was divided broadly into two series (S & T-series) of biopiles with land-farming associated “Plug flow reaction and Recirculation seeding” operation in series. Enriched, mixed culture of petroleum oil degrading bacterial consortium and biosurfactant (rhamnolipid emulsifier) were applied to each biopile for enhancing the biodegradation rate of total petroleum hydrocarbon (TPH) including diesel (C10~C28) and fuel oil (C10~C40). After three weeks of bioremediation process, the TPHC10~C28 and TPHC10~C40 were degraded by almost 75% and 60% in both series of biopiles respectively. In each biopile of S-series, microbial concentration was maintained at the range of 105~106 CFU/g dry soil. Pseudomonas and Acinetobacter species were predominant group present in indigenous and augmented consortia.
    The batch study:Experimental factors were divided to (1) mixed ratio of diesel and fuel oil (2) biosurfactant (3) bioaugmentation. Total heterotrophic bacteria (THB) increased very much after starting operational 6 days. The quantity of increasing level was higher with increasing mixed ratio of diesel.The bioreactors had bioaugmented had more diesel aerobic bacteria (DAB).But with increasing mixed ratio of fuel oil, DAB had deceased and removal efficiency of TPH was down.The bioaumentation and biostimulation had not significant different.The purpose of this study was to provide experiences of ex-situ biopile bioremediation for applied to in-situ bioremediation.

    中文摘要.......... V Abstract ......... VII 誌謝.............. IX 目錄.......... XI 表目錄........... XIII 圖目錄......... XV 第一章 前言 1 第二章 文獻回顧 3 2-1 土壤環境 3 2-1-1 土壤性質 3 2-1-2 土壤微生物 7 2-1-3 土壤污染防治法 8 2-2 石油碳氫化合物 13 2-2-1石油碳氫化合物的生物降解性 15 2-2-2分解石油碳氫化合物之微生物 17 2-3 生物復育 20 2-3-1 土壤生物復育之影響因子 21 2-3-2 土壤生物復育之技術 24 2-4 界面活性劑 (surfactant) 29 2-4-1 界面活性劑特性 29 2-4-2 界面活性劑之種類 30 2-4-3 生物界面活性劑 (biosurfactant) 31 2-4-4 Rhamnolipid之應用 34 第三章 實驗材料與方法 37 3-1 研究材料 37 3-1-1柴油、重油及藥品 37 3-1-2生物界面活性劑 37 3-1-3石油碳氫化合物分解菌 38 3-2 分析方法 39 3-2-1 總石油碳氫化合物分析 39 3-2-2水質及氣體分析 42 3-2-3 土壤中菌量計數 42 3-2-4 分子生物技術 43 3-2-5 掃描式電子顯微鏡 (Scanning electron microscope, SEM) 50 3-3 復育試驗 51 3-3-1 KH10 額外添加柴油之模場 51 3-3-2 KH100 原污染土壤之生物添加及刺激之離場復育模場 55 3-3-3 不同比例的柴油與燃料油的土壤污染之批次實驗 61 第四章 結果與討論 65 4-1額外添加柴油之土壤復育模場研究(KH10) 65 4-1-1生物土堆TPH濃度曲線變化 65 4-1-2微生物種類及活性與環境因子之關係 69 4-2 原污染土壤之生物添加及刺激之離場模場研究(KH100) 76 4-2-1土堆環境因子之探討 76 4-2-2 土壤中的微生物種類及數量 83 4-2-3 生物復育期間TPH濃度曲線分布 89 4-2-4土堆降解特性比較 99 4-2-5 土堆中環境因子及生物呼吸反應之觀測 111 4-3 不同比例的柴油與燃料油的土壤污染之生物降解探討 114 4-3-1環境因子概述 114 4-3-2 土壤中微生物變化 115 4-3-2 探討生物刺激及生物添加之TPH降解效率 119 4-3-4 探討不同油品組成比例之降解效果 124 4-3-5 應用分子生物技術監測微生物族群變化 128 4-4綜合討論 137 第五章 結論與建議 139 5-1 結論 139 5-1-1 KH10 139 5-1-2 KH100 139 5-1-3 實驗室批次試驗 140 5-2 建議 141 參考文獻 142 附錄 i

    Abdul AS, Ang CC, In situ surfactant washing of polychlorinated biphenyls and oils from a contaminated field site: phase 2 pilot study, Ground Water 32:727-734 (1994)
    Abdul AS, and Gibson TL, Laboratory study of surfactant-enhanced washingof polychlorinated biphenyl from sandy material, Environmental science & technology 25: 665 (1991)
    Air force Center for Environmental Excellence, Armstrong Laboratory, and Air Force Instituete of Technology, Use of risk-based standards for cleanup of petroleum contaminated soil. Brooks Air Force Base, Teas, U.S.A, (1994)
    Altas RM, Anassessment of the biodegradation of pertoleum in the Arctic. In:Microbial Ecology, Springer-Verlag,Berlin, 86-90 (1987)
    Altas RM, Microbial degradation of petroleum hydrocarbons: an environmental perspective, Microbiological reviews 45: 180-209 (1981)
    Ang CC and Abdul AS, Aqueous surfactant washing of residual oil contamination from sandy soil, Ground Water Monitoring Reviews Spring: 121-127 (1991)
    Antoniewski J, and Schaefer R, Recherches surles reactions des coenoses microbiennes de sols imregnes par des hydrocarbures. Modification de l’activité respiratoire, AAnales de IInstitut Pasteur 123:805-819 (1972)
    Artur Star, Mikrobiologische untersuchungen einiger podsoliger Böden Kroatiens, Archives of Microbiology 12:329-352 (1942)
    Baheri H and Meysami, Feasibility of fungi bioaugmentation in composting a flare pit soil, Journal of hazardous materials 89:279–286 (2001)
    Baker K H, Herson D S, Bioremediation, McGraw-Hill, New York, (1994)
    Banat IM, Makkar RS, Cameotra SS, Potential commercial applications of microbial surfactants, Applied microbiology and biotechnology 53: 495-508 (2000)
    Becher P, Emulsions, Theory and Practice, second ed, Reinhold Publishing, New York, (1965)
    Bellandi R, Innovative Engineering Technologies for Hazardous Waste Remediation, Van Nostrand Reinhold, New York, 105-120 (1995)
    Berends J and Kloeg D, Landfarming van met PAKs, minerale olie of koolwaterstoffen verontreinigde grond. In: Syllabus Symposium Biologische Grondreiniging, Rotterdam. NIRIA, den Haag, The Netherlands, (1986)
    Biermann M, Lange F, Piorr R, Ploog U, Rutzen H, Schindler J, Schmidt R, In: Falbe J (Ed), Surfactants in Consumer Products, Theory, Technology and Application, Springer-Verlag, Heidelberg, (1987)
    Bogan BW, Lamar RT, PAH degrading capabilities of P. laevis HHB-1625 and its extracellular ligninolytic enzymes, Applied and Environmental Microbiology 62: 1597-1603 (1996)
    Boopathy R, Anaerobic biodegradation of no. 2 diesel fuel in soil: a soil column study, Bioresource Technology 94:143-151 (2004)
    Borgstrom G., World Food Resoures, Intext Educational Publishers, New York, New York, (1973)
    Bossert I, Bartha R, The fate of petroleum in soil ecosystems. In: Atlas RM (Ed.), Petroleum Microbiology. Macmillan Publishing Company, New York, 435-476 (1984)
    Bundy JG, Paton GI, Campbell CD, Microbial communities in different 117 soils types do not converge after diesel contamination, Applied and environmental microbiology 92: 276-288 (2002)
    Burges A, Microorganisms in the soil, Hutchinson Univ. Lib., London, (1958)
    Cerniglia CE, Biodegradation of polycyclic aromatic hydrocarbons, Biodegradation 3: 351-368 (1992)
    Claudia MWH and James LW, Assessment of C:N Ratios and Water Potential for Nitrogen Optimization in Diesel Bioremediation, Bioremediation Journal 10 (1–2):25–35 (2006)
    Colwell RR and Walker JD, Ecological aspects of microbial degradation of petro leum in the marine environment, CRC critical reviews in microbiology 15:423-445 (1977)
    Cooper DG, and Zajic JE, Surface-active compounds from microorganisms, Advances in applied microbiology 26: 229-253 (1980)
    Cooper DG, Biosurfactants, Microbiological Science 3: 145-149 (1986)
    Cook FD, Westlake DWS, Microbial degradation of northern crude oils, Task Force on Northern Oil Development Report,Information Canada,Ottawa, 74 (1) (1974)
    Cundell AM and Traxler RW, Hydrocarbon-degrading bacteria associated with Arctic oil seeps, Journal of industrial microbiology 15:250-255 (1974)
    Cuypers C, Clemens R, Grotenhuis T, and Rulkens W, Prediction of petroleum hydrocarbon bioavailability in contaminated soils and sediments ,Soil and Sediment Contamination 10 (5):459-482 (2001)
    Cuypers C, Grotenhuis T, Joziasse J, and Rulkens W, Rapid persulfate oxidation predicts PAH bioavailability in soils and sediments, Environmental science & technology 34:2057-2063 (2000)
    Davies JS, and Westlake DWS, Crude oil utilization by fungi, Canadian journal of microbiology 25:146-156 (1979)
    Dejonge H, Freijer JI, Verstraten JM, and Westerveld J, Relation between bioavailability and fuel oil hydrocarbon composition in contaminated soils, Environmental science & technology 31:771-775 (1997)
    Del’Arco JP and de Franc’a FP, Influence of oil contamination levels on hydrocarbon biodegradation in sandy sediment, Environmental pollution 110: 515–519 (2001)
    Dibble JT, Bartha R, Effect of environmental parameters on biodegradation of oil sludge, Applied and environmental microbiology 37: 729-739 (1979)
    Fedorak PM, and Westlake DWS, Degradation of aromatics and saturates in crude oil by soil enrichments, Water, air, and soil pollution 16:367-375 (1981)
    Foght JM, Westlake DWS, Biodegradation of hydrocarbons in freshwater. In:Vandermeulen JH, Hrudey SE (Eds), Oilin Freshwater: Chemistry, Biology, Countermeasure Technology, Pergamon Press, New York, 217-230 (1987)
    Frankenberger T, Emerson JKD, and Turner DW, In Situ bioremediation of an underground diesel fuel spill: A case history, Environmental management 13:325–332 (1989)
    Geerdink MJ, van Loosdrecht MCM.and Luyben KChAM, Biodegradability of diesel oil, Biodegradation 7:73-81 (1996)
    Georgiou G, Lin S, Sharma MM, Surface active compounds from microorganisms, Biotechnology 10: 60-5 (1992)
    Gray PH, Wallace RH, Correlation between bacterial numbers and organic matter in a field soil, Canadian journal of microbiology 3 (5):711-714 (1957)
    Herman DC, Artiola JF, Miller RM, Removal of cadmium, lead and zinc from soil by a rhamnolipid biosurfactant, Environmental Science and Technology 29: 2280–2285 (1995)
    Song HG, Wang X, and Bartha R, Bioremediation Potential of Terrestrial Fuel Spills, Applied and environmental microbiology 56 (3):652-656 (1990)
    Huesemann MH, Predictive model for estimating the extent of petroleum hydrocarbon biodegradation in contaminated soils, Environmental science & technolog 29:7-18 (1995)
    Huesemann MH, Moore K J, Compositional changes during landfarming of weathered Michigan crude oil contaminated soil, Jounal of Soil Contaminated 2: 245-264 (1993)
    Hunt PG, Rickard WE, Deneke FJ, Koutz FR, and Murman RP, Terrestrial oil spills in Alaska:Environmental effects and recovery, Prevention and control of oil spills 733-740 (1973)
    Jain DK, Lee H, Trevors JT, Effect of addition of Pseudomonas aeruginosa UG2 inocula or biosurfactants on biodegradation of selected hydrocarbons in soil, Journal of industrial microbiology 10:87-93 (1992)
    Jensen V, Bacterial flora of soil after application of oily waste, Oikos 26:152-158 (1975b)
    Jobson A, Cook FD, and Westlake DWS, Microbial utilization of crude oil, Applied microbiology 23:1082-1089 (1972)
    Jones JG, and Edington MA, An eological survey of hydrocarbon oxidizing microorganisms, Journal of general microbiology 52:381-390 (1968)
    Jorgensen KS, Puustinen J, Suortti AM, Bioremediation of petroleum hydrocarbon-contaminated soil by composting in biopiles, Environmental Pollution 107:245-254 (2000)
    Kanga SH, Bonner JS, Page CA, Mills MA, Autenrieth RL, Solubilization of naphthalene and methyl-substituted naphthalenes from crude oil using biosurfactants, Environmental Science and Technology 31: 556-561 (1997)
    Kuehl RO, Design of Experiments: Statistical Principles of Research Design and Analysis 2nd Edition, Duxbury Press, (c1994)
    Leahy JG, Colwell, Microbial degradation of hydrocarbons in the environment, Microbiological Reviews 54: 305-315 (1990)
    Lin SC, Biosurfactant: recent advances, Journal of Chemical Technology and Biotechnology 63:109–120 (1996)
    Llanos C, and KjΦller A, Changes in the flora of soil fungi following oil waste application, Oikos 27:377-382 (1976)
    Makkar RS, Rockne KJ, Comparison of synthetic surfactants and biosurfactants fin enhancing biodegradation of polycyclic aromatic hydrocarbons, Environmental and Toxicological Chemistry 22:2280–2292 (2003)
    Margesin R and Schinner F, Bioremediation (Natural Attenuation and Biostimulation) of Diesel-Oil-Contaminated Soil in an Alpine Glacier Skiing Area, Applied and Environmental Microbiology 3127-3133 (2001)
    Menzie CA, Santodonato, Exposure to carcinogenic PAHs in the environment, Environmental science & technolog 26:1278-1284 (1992)
    Mercer JW, Cohen RM, A review of immiscible fluids in the subsurface: properties、 models、remediation and characterization, Journal of contaminant hydrology 6: 107-163 (1990)
    Morgan P and Watkinson RJ, Hydrocarbon degradation in soils and methods for soil biotreatment, Critical reviews in biotechnology 8:305–333 (1989)
    Mulligan CN, Gibbs BF, Recovery of biosurfactants by ultrafiltration, Journal of Chemical Technology and Biotechnology 47:23–29 (1990)
    Mulligan CN, Gibbs BF, Factors influencing the economics of biosurfactants. In: Kosaric N (Ed), Biosurfactants, Production, Properties, Applications. Marcel Dekker, New York, 329–371 (1993)
    Mulligan Catherine N, Environmental applications for biosurfactants, Environmental Pollution 133: 183-198 (2005)
    Nocentini M, Pinelli D, Fava F, Bioremediation of a soil contaminated by hydrocarbon mixtures: the residual concentration problem, Chemosphere 41: 1115-1123 (2000)
    Odu, CTI, Fermentation characteristics and biochemical reactions of some organisms isolated from oil-polluted soils, Environmental Pollution 15:271-276 (1987b)
    Pinholt Y, Struwe S and KjΦller A, Microbial changes during oil decomposition in soil, Microbial changes during oil decomposition in soil Ecography 2 (3):195-200 (1979)
    Rodrigo JSJacques, Eder CSantos, Fátima MBento, Maria CRPeralba, Pedro ASelbach, Enilson LSSá and Flávio AOCamarg, Anthracene biodegradation by Pseudomonas sp. isolated from a petrochemical sludge landfarming site, International Biodeterioration & Biodegradation 56:143–150 (2005)
    Roger CP, Joseph MS, Anaerobic biodegradation of natural gas condensate can be stimulated by the addition of gasoline, Biodegradation (2006)
    Ronald MA,Petroleum microbiology, Macmillan Publishing Company, New York, New York, (1984)
    Seklemova E, Pavlova A, Kovacheva K, Biostimulation-based bioremediation of diesel fuel: field demonstration, Biodegradation 12: 311–316 (2001)
    Shcherbakova VA, Laurinavichius KS, Akimenko VK, Toxic effect of surfactants and probable products of their biodegradation on methanogenesis in an anaerobic microbial community, Chemosphere 39 (11):1861-1870 (1999)
    Sims R, Bass J, Review of in-place treatment techniques for contaminated surface soils, Technical evaluation Final report 1 (1984)
    Smadar Admon, Michal Green, Yoram Avnimelech, Biodegradation kinetics of hydrocarbons in soil during land treatment of oily sludge, Journal bioremediation 5 (3):193-209 (2001)
    Speight JG, The chemistry and technology of petroleum, Marcel Dekker Inc (1980)
    Starc A, Mikrobiologische Untersuchungen einiger podsoliger Böden Kroatiens, Archives of Microbiology 12: 329-352 (1942)
    Stotzky G., Microbial respiration, In: Black CA et al Methods of soil analysis part2 chemical and microbiological properties, Monogr.9, pt.2 Amer. Soc. Agron. Madison Wisconsin 1550-1572 (1965)
    Sublette, Kerry L, Fundamentals of Bioremediation of Hydrocarbon Contaminated Soils, the University of Tulsa, continuing engineering and science education, March 5-6 (2001)
    Sutherson SS, Remediation engineering design concepts, CRC Press Incorporated, (1997)
    Sutton PA, Lewis CA, Rowland SJ, Isolation of individual hydrocarbons from the unresolved complex hydrocarbon mixture of a biodegraded crude oil using preparative capillary gas chromatography, Organic Geochemistry 36: 963–970 (2005)
    Troeh FR and Thompson LM, Soils and Soil Fertility, 5th Edition, Oxford University Press, New York, (1993)
    Tester CF and Parr JF, Decomposition of sewage sludge compost in soil: IV. Effect of indigenous salinity, Journal of Environmental Quality 12: 123-126 (1983)
    US DA Soil Survey Manual, Handbook 18 (1993)
    US EPA, How to Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites A Guide for Corrective Action Plan Reviewers, EPA 510-b-94 (2004)
    US EPA, In Situ and Ex Situ Biodegradation Technologies for Remediation of Contaminated Sites,Engineering Issue, (2006)
    US EPA, Aerobic Biodegradation of Oily Wastes A Field Guidance Book For Federal On-scene Coordinators, (2003)
    Van Dyke MI, Couture P, Brauer M, Lee H, Trevors JT, Pseudomonas aeruginosa UG2 rhamnolipid biosurfactants: structural characterization and their use in removing hydrophobic compounds from soil, Canadian Journal of Microbiology 39:1071–1078 (1993)
    Venosa AD, ZHU XUEQING, Biodegradation of Crude Oil Contaminating Marine Shorelines and Freshwater Wetlands, Spill Science & Technology Bulletin 8 (2): 163-178 (2003)
    West CC, Harwell JH, Surdfactant and subsurface remediation, Environmental sciences 26:2324-2330 (1992)
    Winogradsky S, letudes sur la microbiologie du sol. I. Sur la methode, Annales de l'Institut Pasteur 39:299-354 (1925)
    Williamson DG, Loehr RC, Kimura Y, Measuring release and biodegradation kinetics of aged hydrocarbons from soils, In: Alleman, BC, Leeson, A (Eds), In-situ and On-Site Bioremediation, Vol. 5. Battelle Press, Columbus, USA, 605-610 (1997)
    Wouter HNoordman , Johann HJWachter, Geert JdeBoer, Dick BJanssen, The enhancement by surfactants of hexadecane degradation by Pseudomonas aeruginosa varies with substrate availability, Journal of Biotechnology 94:195–212 (2002)
    Zhang Y, Miller RM, Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant), Applied and Environmental Microbiology 58: 3276-3281 (1992)
    行政院農委會施肥手冊 (1987)
    行政院環境保護署土壤及地下水整治年報 (94)
    王一雄,土壤污染學 (1995)
    柯清水,石油化學概論 (1970)
    盧至人,地下水的污染整治,國立編譯館,台北 (1998)
    陳慎德,王凱中,何秉宜,何忠賢,對台灣地區土壤地下水整治工作之看法 ,環境工程會刊, 第十卷第三期,p32~67 (1999)
    黃德坤、陳大麟、林舜隆、羅文杰,環境法醫技術應用在油污染源之鑑定,工業污染防治23,第91期 (2004)
    蔡在唐、胡太龢、陳忠勳、葉宗裕、高志明,評估以加強式生物處理整治受燃料油污染土壤之成效,土壤與地下水研討會 (2006)
    鄭幸雄、潘柏岑、廖翊廷、劉保文、黃良銘,應用生物界面活性劑促進柴油污染土壤生物復育之可行性評估及現場驗證,土壤與地下水研討會 (2006)
    何信恩,利用熱蒸氣注入/真空萃取技術現地整治受柴油污染土壤之最佳操作條件研究,國立中山大學環境工程研究所碩士論文 (1994)
    馬志強,應用生物界面活性劑促進柴油污染土壤中原生菌生物降解效率,國立成功大學環境工程學系(所)碩士論文 (2005)
    張莉茹,以自然衰減整治受石油碳氫化合物污染之地下水,國立中山大學環境工程研究所碩士論文 (2003)
    楊明潔,柴油分解菌與生物界面活性劑應用於土壤地下水復育之研究,國立成功大學環境工程學系(所)碩士論文 (2006)
    廖淑秋,以堆肥馴化五氯酚分解菌群降解高濃度五氯酚之研究,國立屏東科技大學環境工程與科學系碩士論文 (2002)
    潘柏岑,應用土耕法配合生物添加促進法整治柴油污染土壤之研究,國立成功大學環境工程學系(所)碩士論文 (2006)
    張長泉、鄭幸雄、林妙珠、魏郁芳、鄭竹逸,用於檢測綠膿桿菌之寡核苷酸探針、生物晶片及其檢測方法,中華民國專利 (2007)

    下載圖示 校內:2009-07-31公開
    校外:2009-07-31公開
    QR CODE