簡易檢索 / 詳目顯示

研究生: 林軒裕
Lin, Hsuan-Yu
論文名稱: 血流限制合併跑步機行走訓練在姿勢雙重作業的即時效應
The Immediate Effect of Combined Blood Flow Restriction and Treadmill Walking Training on Posture Dual-task
指導教授: 黃英修
Hwang, Ing-Shiou
學位類別: 碩士
Master
系所名稱: 醫學院 - 物理治療學系
Department of Physical Therapy
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 64
中文關鍵詞: 血流限制跑步機行走雙重任務膚電反應心率變異分析氧合能力
外文關鍵詞: blood flow restriction, treadmill walking, dual-task, skin conductance response, heart rate variability, oxygenation capacity
相關次數: 點閱:68下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    目的: 血流限制(Blood flow restriction, BFR)產生局部缺氧、細胞內代謝壓
    力增加,啟動身體乳酸機制,合併低阻力訓練也能夠促進肌力增加、肌肉肥大;但是
    少有研究探討其對認知功能的潛在幫助,甚至在雙重作業的立即性增益。本研究探討
    血流限制對跑步機行走訓練時前額葉血紅素氧合能力、膚電反應(skin conductance
    response, SCR)、心率變異性(heart rate variability, HRV)的改變,同時探討單
    次跑步機行走搭配血流限制對於姿勢性雙重任務(posture dual-task)的立即性效果。

    方法: 28 名健康成年人(平均年齡: 25.25 ± 2.59 歲,14 男,14 女)參與實驗。
    受試者隨機分派至 BFR 合併跑步機行走組(BFR 組,n = 14 人)或一般跑步機行走組
    (控制組,n = 14 人)。實驗程序共有三個部分:前測、跑步機介入、後測。前、後測
    的項目有生理量測、路徑描繪測試(Trail Making Test A & B, TMT A & B)、姿勢雙
    重任務等。生理量測包含:坐姿閉眼五分鐘休息時的心率變異性、膚電反應、以及前
    額葉的血紅素氧合能力。姿勢雙重任務是受試者站在力板的軟墊上,以最快的速度拍
    打感應燈系統(BlazePod system)所顯示的目標燈號。BFR 組的介入是在兩側大腿近
    端綁加壓帶(100 毫米汞柱的壓力)進行跑步機行走到目標速度 5 Km/hr,總計 20 分
    鐘。控制組不使用加壓帶,以相同方式行走 20 分鐘。以配對 t 檢定比較兩組受試者
    前後測的表現差異(包含:拍打反應燈的反應時間(reaction time, RT)、正確拍擊數
    (accurate hits)、壓力中心(center of pressure, COP)的移動面積、樣本熵(sample
    entropy, SampEn)、TMT A & B、血紅素氧合能力、膚電反應、心率變異性),以獨立
    t 檢定比較上述參數之標準化訓練增益((後測−前測)/前測)的組間差異。獨立 t 檢
    定亦用於比較兩組受試者在跑步機行走時,心率變異性參數、膚電反應參數、以及前
    額葉血紅素氧合能力變化的差異。

    結果: 在姿勢上作業方面,反應時間的標準化訓練增益在 BFR 組與控制組間具
    有顯著差異,相較於控制組,BFR 組的正確拍擊數顯著提升(p = 0.023)且反應時間
    縮短(p = 0.002)。在姿勢作業方面,壓力中心移動面積與樣本熵的標準化增益並沒
    有顯著的差異(p > 0.05)。認知測試方面,TMT A 與 B 在介入前後的標準化增益並沒
    有顯著的組間差異(p > 0.05)。在跑步機行走時,除了平均心率(HRmean)較低之外,BFR
    組心率變異的 SD1 與 RMSSD 也顯著高於控制組(p = 0.024)。但是兩組膚電反應並沒
    有顯著的不同(p > 0.05);在血紅素氧合能力的變化方,BFR 組ΔHbO2 數值顯著小
    於控制組(p = 0.013),但是兩組的ΔHHb 並未出現顯著差異(p > 0.05)。

    結論: 跑步機行走搭配血流限制在姿勢雙重任務表現有更好的表現,特別是姿
    勢上作業,其原因可能與血流限制帶來迷走神經的調控增強有關;本研究結果支持下
    肢有氧訓練搭配下肢血流限制可以促進姿勢雙重作業表現,潛在對平衡障礙族群的防
    跌訓練具有價值。

    關鍵詞: 血流限制、跑步機行走、雙重任務、膚電反應、心率變異分析、氧合能力

    Abstract

    Objectives: Blood flow restriction (BFR) produces local hypoxia during exercise
    training. Low-load exercise combined with BFR can effectively increase power and
    hypertrophy of the muscle, attributable to the increases in systematic lactate level and intracellular metabolic pressure. However, the acute effects of treadmill walking with BFR on cognitive function, especially for posture dual-task, have not been systematically investigated. The purposes of this study were to investigate 1) the differences in SCR level, HRV kinetics, and prefrontal hemoglobin/dehemoglobin dynamics during treadmill walking with or without BFR, and 2) the immediate effect of single-bout treadmill walking with BFR on the performance of a designated posture dual-task for young adults.

    Methods: Twenty-eight healthy young adults (mean age: 25.25 ± 2.59 years; 14 men and 14 women, ranging from 22 to 34 years old) were recruited in this study. All participants were randomly assigned to either treadmill walking with BFR (the BFR group, n = 14) or the treadmill walking alone (the control group, n = 14). The experimental procedure included pre-test, intervention session, and post-test. The pre-test and post-test consisted of physiological measurements (PM), Trail Making Test A and B (TMT A & B), and a posture dual-task (DT). For the PM, the participants sat in a comfortable position with their eyes closed for 5 minutes, during which baseline heart rate variability (HRV), skin conductance response (SCR), and oxygenation capacity & hemodynamics (OCH) of the left prefrontal lobe were monitored. During the intervention session, the BFR group was instructed to walk
    on the treadmill at a target speed of 5 Km/hour for 20 minutes, wearing the inflated pneumatic cuffs at 100 mmHg around the proximal portion of their bilateral thighs. The control group did not receive vascular constraints during the treadmill walking. Independent samples t-test was used to contrast normalized differences ((post-test-pre-test)/pre-test) in scores of TMT-A and B and task performances of posture and supraposture tasks (e.g., reaction time (RT), accurate hits, area of the center of pressure (COP-area), and sample entropy of the center of pressure (COP-SampEn)) between the two groups. Furthermore, independent samples t-test was used to contrast HRV variables, SCR variables, and ∆HbO2/∆HHb during treadmill walking.

    Results: For the significant normalized changes in the supraposture task performance, the BFR group revealed a greater increase in the number of accurate hits (p = 0.023) and shorter reaction time (RT) (p =0.002) in the post-test than the control group, despite an insignificant group difference in normalized changes in the COP-area. For the cognitive tests, there were no significant differences in normalized change in TMT A & B between the two groups (A: p = 0.882, B: p = 0.648). For the HRV during treadmill walking, the BFR group exhibited higher SD1 and RMSSD than the control group (p = 0.024). The SCR level during treadmill walking did not significantly differ for the BFR and control groups (p > 0.05). The
    control group exhibited a higher relative increase in oxygenated hemoglobin (ΔHbO2) during treadmill walking than the BFR group (p = 0.013), despite that relative increase in deoxygenated hemoglobin (ΔHHb) was not different between the two groups (p > 0.05).

    Conclusion: Treadmill walking with BFR is helpful to improve posture dual-task
    performance, especially for supraposture task component. The performance gain possibly relates to enhanced vagal modulation with BFR. This study supports the concept that aerobic training combined with lower extremity BFR can promote posture dual-task performance, with potential training benefit to prevent falls for the subjects with postural destabilization.

    Keywords: blood flow restriction, treadmill walking, dual-task, skin conductance
    response, heart rate variability, oxygenation capacity

    Abstract i 摘要 iv Abbreviation List vii 誌謝 viii Contents ix List of Tables xii List of Figures xiv Chapter 1. Introduction 1 1.1 Effects of aerobic exercise on cognition 1 1.2 Benefits of blood flow restriction 3 1.3 Effects of BFR training on cognitive function 4 1.4 Exercise effects on heart rate variability and skin conductance response 5 1.5 Rationales, purpose, and hypothesis 8 Chapter 2. Methods 10 2.1 Participants 10 2.2 Experimental procedures 11 2.2.1 Physiological measurement 11 2.2.2 Trail making tests A and B 12 2.2.3 Dual tasks 13 2.2.4 Treadmill intervention 14 2.3 Data analysis 15 2.3.1 Postural variables 15 2.3.2 Heart rate variability variables 17 2.3.3 Skin conductance response variables 18 2.3.4 Oxyhemoglobin (HbO2) and deoxyhemoglobin (HHb) 19 2.4 Statistical analysis 20 Chapter 3. Results 22 3.1 Dual-task performance 22 3.2 Performance of cognitive test (Trail making test-A & B) 23 3.3 Heart rate variability 24 3.4 Skin conductance response 24 3.5 Oxygenation capacity & hemodynamics of the prefrontal lobe 25 Chapter 4. Discussion 26 4.1 The immediate effects of treadmill walking with BFR on dual-task variables 26 4.2 The immediate effects of treadmill walking with BFR on HRV variables 29 4.3 The immediate effects of treadmill walking with BFR on oxyhemoglobin (HbO2) and deoxyhemoglobin (HHb) 31 4.4 Insignificant immediate effects of treadmill walking with BFR on TMT-A & B and SCR 32 4.5 Limitations and future perspective 33 Chapter 5. Conclusions 35 References 36

    Abe, T., Kearns, C. F., & Sato, Y. (2006). Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training. Journal of Applied Physiology, 100(5), 1460-1466.
    Adams, V., & Linke, A. (2019). Impact of exercise training on cardiovascular disease and risk. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1865(4), 728-734.
    Adlerton, A. K., Moritz, U., & Moe‐Nilssen, R. (2003). Forceplate and accelerometer measures for evaluating the effect of muscle fatigue on postural control during one‐legged stance. Physiotherapy Research International, 8(4), 187-199.
    Agewall, S., Hulthe, J., Fagerberg, B., Gottfridsson, B., & Wikstrand, J. (2002). Post‐occlusion brachial artery vasodilatation after ischaemic handgrip exercise is nitric oxide mediated. Clinical Physiology and Functional Imaging, 22(1), 18-23.
    Albinet, C. T., Boucard, G., Bouquet, C. A., & Audiffren, M. (2010). Increased heart rate variability and executive performance after aerobic training in the elderly. European Journal of Applied Physiology, 109(4), 617-624.
    Alderman, B. L., & Olson, R. L. (2014). The relation of aerobic fitness to cognitive control and heart rate variability: A neurovisceral integration study. Biological Psychology, 99, 26-33.
    American College of Sports Medicine (Ed.). (2013). ACSM's Resources for the Health Fitness Specialist. Lippincott Williams & Wilkins.
    Ashendorf, L., Jefferson, A. L., O'Connor, M. K., Chaisson, C., Green, R. C., & Stern, R. A. (2008). Trail Making Test errors in normal aging, mild cognitive impairment, and dementia. Archives of Clinical Neuropsychology, 23(2), 129-137.
    Blain, G. M., Mangum, T. S., Sidhu, S. K., Weavil, J. C., Hureau, T. J., Jessop, J. E., Bledsoe, A. D., Richardson, R. S., & Amann, M. (2016). Group III/IV muscle afferents limit the intramuscular metabolic perturbation during whole body exercise in humans. The Journal of Physiology, 594(18), 5303-5315.
    Brandner, C. R., Warmington, S. A., & Kidgell, D. J. (2015). Corticomotor excitability is increased following an acute bout of blood flow restriction resistance exercise. Frontiers in Human Neuroscience, 9, 652.
    Brown, L. A., Gage, W. H., Polych, M. A., Sleik, R. J., & Winder, T. R. (2002). Central set influences on gait. Experimental Brain Research, 145(3), 286-296.
    Carta, M. G., Cossu, G., Pintus, E., Zaccheddu, R., Callia, O., Conti, G., Pintus, M., Gonzalez, C. I. A., Massidda, M. V., & Mura, G. (2021). Moderate exercise improves cognitive function in healthy elderly people: results of a randomized controlled trial. Clinical Practice and Epidemiology in Mental Health: CP & EMH, 17, 75.
    Castells-Sánchez, A., Roig-Coll, F., Lamonja-Vicente, N., Altés-Magret, M., Torán-Monserrat, P., Via, M., García-Molina, A., Tormos, J. M., Heras, A., & Alzamora, M. T. (2019). Effects and mechanisms of cognitive, aerobic exercise, and combined training on cognition, health, and brain outcomes in physically inactive older adults: the projecte moviment protocol. Frontiers in Aging Neuroscience, 216.
    Cepeda-Benito, A., & Tiffany, S. T. (1996). The use of a dual-task procedure for the assessment of cognitive effort associated with cigarette craving. Psychopharmacology, 127(1), 155-163.
    Ciolek, C. H., & Lee, S. Y. (2019). Cognitive Issues in the Older Adult. Guccione's Geriatric Physical Therapy E-Book, 425.
    Clark, D. J., Chatterjee, S. A., McGuirk, T. E., Porges, E. C., Fox, E. J., & Balasubramanian, C. K. (2018). Sympathetic nervous system activity measured by skin conductance quantifies the challenge of walking adaptability tasks after stroke. Gait & Posture, 60, 148-153.
    Coghill, R. C. (2020). The distributed nociceptive system: a framework for understanding pain. Trends in Neurosciences, 43(10), 780-794.
    Cui, X., Bray, S., & Reiss, A. L. (2010). Speeded near infrared spectroscopy (NIRS) response detection. PLoS one, 5(11), e15474.
    Dagdeviren, M. (2017). Role of nitric oxide synthase in normal brain function and pathophysiology of neural diseases. Nitric Oxide Synthase-Simple Enzyme-Complex Roles, 1, 37-54.
    Dalsgaard, M. K., Nybo, L., Cai, Y., & Secher, N. H. (2003). Cerebral metabolism is influenced by muscle ischaemia during exercise in humans. Experimental Physiology, 88(2), 297-302.
    Ding, Q., Vaynman, S., Akhavan, M., Ying, Z., & Gomez-Pinilla, F. (2006). Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience, 140(3), 823-833.
    Drane, D. L., Yuspeh, R. L., Huthwaite, J. S., & Klingler, L. K. (2002). Demographic characteristics and normative observations for derived-trail making test indices. Cognitive and Behavioral Neurology, 15(1), 39-43.
    Dupuy, O., Bosquet, L., Fraser, S. A., Labelle, V., & Bherer, L. (2018). Higher cardiovascular fitness level is associated to better cognitive dual-task performance in Master Athletes: Mediation by cardiac autonomic control. Brain and Cognition, 125, 127-134.
    Eggenberger, P., Annaheim, S., Kündig, K. A., Rossi, R. M., Münzer, T., & de Bruin, E. D. (2020). Heart rate variability mainly relates to cognitive executive functions and improves through exergame training in older adults: a secondary analysis of a 6-month randomized controlled trial. Frontiers in Aging Neuroscience, 12, 197.
    Ehrnborg, C., & Rosén, T. (2008). Physiological and pharmacological basis for the ergogenic effects of growth hormone in elite sports. Asian Journal of Andrology, 10(3), 373-383.
    Electrophysiology, T. F. o. t. E. S. o. C. t. N. A. S. o. P. (1996). Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation, 93(5), 1043-1065.
    Ganesan, G., Cotter, J. A., Reuland, W., Cerussi, A. E., Tromberg, B. J., & Galassetti, P. (2015). Effect of blood flow restriction on tissue oxygenation during knee extension. Medicine and Science in Sports and Exercise, 47(1), 185.
    Gentil, P., Oliveira, E., & Bottaro, M. (2006). Time under tension and blood lactate response during four different resistance training methods. Journal of Physiological Anthropology, 25(5), 339-344.
    Giles, G. E., Brunyé, T. T., Eddy, M. D., Mahoney, C. R., Gagnon, S. A., Taylor, H. A., & Kanarek, R. B. (2014). Acute exercise increases oxygenated and deoxygenated hemoglobin in the prefrontal cortex. Neuroreport, 25(16), 1320-1325.
    Gomes-Osman, J., Cabral, D. F., Morris, T. P., McInerney, K., Cahalin, L. P., Rundek, T., Oliveira, A., & Pascual-Leone, A. (2018). Exercise for cognitive brain health in aging: a systematic review for an evaluation of dose. Neurology: Clinical Practice, 8(3), 257-265.
    Graham, B., Breault, M. J., McEwen, J. A., & McGraw, R. W. (1993). Occlusion of arterial flow in the extremities at subsystolic pressures through the use of wide tourniquet cuffs. Clinical Orthopaedics and Related Research®, 286, 257-261.
    Hadjistavropoulos, T., Carleton, R. N., Delbaere, K., Barden, J., Zwakhalen, S., Fitzgerald, B., Ghandehari, O. O., & Hadjistavropoulos, H. (2012). The relationship of fear of falling and balance confidence with balance and dual tasking performance. Psychology and Aging, 27(1), 1.
    Heller, M. F., Challis, J. H., & Sharkey, N. A. (2009). Changes in postural sway as a consequence of wearing a military backpack. Gait & Posture, 30(1), 115-117.
    Hertz, L., & Dienel, G. A. (2005). Lactate transport and transporters: general principles and functional roles in brain cells. Journal of Neuroscience Research, 79(1‐2), 11-18.
    Hirano, D., Goto, Y., Jinnai, D., & Taniguchi, T. (2020). Effects of a dual task and different levels of divided attention on motor-related cortical potential. Journal of Physical Therapy Science, 32(11), 710-716.
    Hoffman, J. R. (2020). Evaluation of a reactive agility assessment device in youth football players. The Journal of Strength & Conditioning Research, 34(12), 3311-3315.
    Idström, J. P., Subramanian, V. H., Chance, B., Schersten, T., & Bylund-Fellenius, A. C. (1986, December). Energy metabolism in relation to oxygen supply in contracting rat skeletal muscle. In Federation proceedings (Vol. 45, No. 13, pp. 2937-2941).
    Junior, A. F., Schamne, J. C., Perandini, L. A. B., Chimin, P., & Okuno, N. M. (2019). Effects of walking training with restricted blood flow on HR and HRV kinetics and HRV recovery. International Journal of Sports Medicine, 40(09), 585-591.
    Kargaran, A., Abedinpour, A., Saadatmehr, Z., Yaali, R., Amani-Shalamzari, S., & Gahreman, D. (2021). Effects of dual-task training with blood flow restriction on cognitive functions, muscle quality, and circulatory biomarkers in elderly women. Physiology & Behavior, 239, 113500.
    Katz, A., & Sahlin, K. (1987). Effect of decreased oxygen availability on NADH and lactate contents in human skeletal muscle during exercise. Acta Physiologica Scandinavica, 131(1), 119-127.
    Kawada, S., & Ishii, N. (2008). Changes in skeletal muscle size, fibre‐type composition and capillary supply after chronic venous occlusion in rats. Acta Physiologica, 192(4), 541-549.
    Kemp, A. H., Koenig, J., & Thayer, J. F. (2017). From psychological moments to mortality: A multidisciplinary synthesis on heart rate variability spanning the continuum of time. Neuroscience & Biobehavioral Reviews, 83, 547-567.
    Kennedy, D. S., McNeil, C. J., Gandevia, S. C., & Taylor, J. L. (2014). Fatigue-related firing of distal muscle nociceptors reduces voluntary activation of proximal muscles of the same limb. Journal of Applied Physiology, 116(4), 385-394.
    Kieras, D. E., & Meyer, D. E. (1997). An overview of the EPIC architecture for cognition and performance with application to human-computer interaction. Human–Computer Interaction, 12(4), 391-438.
    Kim, D., Loenneke, J. P., Ye, X., Bemben, D. A., Beck, T. W., Larson, R. D., & Bemben, M. G. (2017). Low‐load resistance training with low relative pressure produces muscular changes similar to high‐load resistance training. Muscle & Nerve, 56(6), E126-E133.
    Kubo, K., Ishida, Y., Suzuki, S., Komuro, T., Shirasawa, H., Ishiguro, N., Shukutani, Y., Tsunoda, N., Kanehisa, H., & Fukunaga, T. (2008). Effects of 6 months of walking training on lower limb muscle and tendon in elderly. Scandinavian Journal of Medicine & Science in Sports, 18(1), 31-39.
    Loenneke, J., Fahs, C., Wilson, J., & Bemben, M. (2011). Blood flow restriction: the metabolite/volume threshold theory. Medical Hypotheses, 77(5), 748-752.
    Loenneke, J., Wilson, G., & Wilson, J. (2010). A mechanistic approach to blood flow occlusion. International Journal of Sports Medicine, 31(01), 1-4.
    Lojovich, J. M. (2010). The relationship between aerobic exercise and cognition: is movement medicinal? The Journal of Head Trauma Rehabilitation, 25(3), 184-192.
    Mok, E., Suga, T., Sugimoto, T., Tomoo, K., Dora, K., Takada, S., Hashimoto, T., & Isaka, T. (2020). Negative effects of blood flow restriction on perceptual responses to walking in healthy young adults: a pilot study. Heliyon, 6(8), e04745.
    Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7(3), 134-140.
    Montesinos, L., Castaldo, R., & Pecchia, L. (2019). Selection of entropy-measure parameters for force plate-based human balance evaluation. In World Congress on Medical Physics and Biomedical Engineering 2018 (pp. 315-319). Springer, Singapore.
    Morel, M., Petit, C., Bruyas, M., Chapon, A., Dittmar, A., Delhomme, G., & Collet, C. (2006). Physiological and behavioral evaluation of mental load in shared attention tasks. In 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference (pp. 5526-5527). IEEE.
    Morita, T., Fukuda, T., Kikuchi, H., Ikeda, K., Yumoto, M., & Sato, Y. (2010). Effects of blood flow restriction on cerebral blood flow during a single arm-curl resistance exercise. International Journal of KAATSU Training Research, 6(1), 9-12.
    Nagai, Y., Jones, C. I., & Sen, A. (2019). Galvanic skin response (gsr)/electrodermal/skin conductance biofeedback on epilepsy: a systematic review and meta-analysis. Frontiers in Neurology, 10, 377.
    Nouchi, R., Taki, Y., Takeuchi, H., Sekiguchi, A., Hashizume, H., Nozawa, T., Nouchi, H., & Kawashima, R. (2014). Four weeks of combination exercise training improved executive functions, episodic memory, and processing speed in healthy elderly people: evidence from a randomized controlled trial. Age, 36(2), 787-799.
    Ohlsson, C., Mohan, S., Sjogren, K., Tivesten, A., Isgaard, J., Isaksson, O., Jansson, J.-O., & Svensson, J. (2009). The role of liver-derived insulin-like growth factor-I. Endocrine Reviews, 30(5), 494-535.
    Pashler, H. (1994). Dual-task interference in simple tasks: data and theory. Psychological Bulletin, 116(2), 220.
    Patterson, S. D., Hughes, L., Warmington, S., Burr, J., Scott, B. R., Owens, J., Abe, T., Nielsen, J. L., Libardi, C. A., & Laurentino, G. (2019). Blood flow restriction exercise: considerations of methodology, application, and safety. Frontiers in Physiology, 533.
    Pearson, S. J., & Hussain, S. R. (2015). A review on the mechanisms of blood-flow restriction resistance training-induced muscle hypertrophy. Sports Medicine, 45(2), 187-200.
    Pignanelli, C., Christiansen, D., & Burr, J. F. (2021). Blood flow restriction training and the high-performance athlete: science to application. Journal of Applied Physiology, 130(4), 1163-1170.
    Pontifex, M. B., McGowan, A. L., Chandler, M. C., Gwizdala, K. L., Parks, A. C., Fenn, K., & Kamijo, K. (2019). A primer on investigating the after effects of acute bouts of physical activity on cognition. Psychology of Sport and Exercise, 40, 1-22.
    Pope, Z. K., Willardson, J. M., & Schoenfeld, B. J. (2013). Exercise and blood flow restriction. The Journal of Strength & Conditioning Research, 27(10), 2914-2926.
    Pallesen, H., Bjerk, M., Pedersen, A. R., Nielsen, J. F., & Evald, L. (2019). The effects of high-intensity aerobic exercise on cognitive performance after stroke: a pilot randomised controlled trial. Journal of Central Nervous System Disease, 11, 1179573519843493.
    Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039-H2049.
    Routledge, F. S., Campbell, T. S., McFetridge-Durdle, J. A., & Bacon, S. L. (2010). Improvements in heart rate variability with exercise therapy. Canadian Journal of Cardiology, 26(6), 303-312.
    Sakata, K., Shirotani, M., Yoshida, H., & Kurata, C. (1998). Physiological fluctuation of the human left ventricle sympathetic nervous system assessed by iodine-123-MIBG. Journal of Nuclear Medicine, 39(10), 1667-1671.
    Schultz, W., Tremblay, L., & Hollerman, J. R. (1998). Reward prediction in primate basal ganglia and frontal cortex. Neuropharmacology, 37(4-5), 421-429.
    Schwarck, S., Busse, N., Ziegler, G., Glanz, W., Becke, A., & Düzel, E. (2021). Heart Rate Variability During Physical Exercise Is Associated With Improved Cognitive Performance in Alzheimer's Dementia Patients—A Longitudinal Feasibility Study. Frontiers in Sports and Active Living, 3.
    Scrimin, S., Patron, E., Peruzza, M., & Moscardino, U. (2020). Cardiac vagal tone and executive functions: Moderation by physical fitness and family support. Journal of Applied Developmental Psychology, 67, 101120.
    Sebastiani, L., Di Gruttola, F., Incognito, O., Menardo, E., & Santarcangelo, E. L. (2019). The higher the basal vagal tone the better the motor imagery ability. Archives Italiennes de Biologie, 157(1), 3-14.
    Shaffer, F., & Ginsberg, J. P. (2017). An overview of heart rate variability metrics and norms. Frontiers in Public Health, 258.
    Sigman, M., & Dehaene, S. (2008). Brain mechanisms of serial and parallel processing during dual-task performance. Journal of Neuroscience, 28(30), 7585-7598.
    Smith, K. J., & Ainslie, P. N. (2017). Regulation of cerebral blood flow and metabolism during exercise. Experimental Physiology, 102(11), 1356-1371.
    Soares-Miranda, L., Sattelmair, J., Chaves, P., Duncan, G. E., Siscovick, D. S., Stein, P. K., & Mozaffarian, D. (2014). Physical activity and heart rate variability in older adults: the Cardiovascular Health Study. Circulation, 129(21), 2100-2110.
    Speer, K. E., Semple, S., Naumovski, N., & McKune, A. J. (2020). Measuring heart rate variability using commercially available devices in healthy children: A validity and reliability study. European Journal of Investigation in Health, Psychology and Education, 10(1), 390-404.
    Sugimoto, T., Suga, T., Tomoo, K., Dora, K., Mok, E., Tsukamoto, H., Takada, S., Hashimoto, T., & Isaka, T. (2021). Blood flow restriction improves executive function after walking. Med Sci Sports Exerc, 53(1), 131-138.
    Sumide, T., Sakuraba, K., Sawaki, K., Ohmura, H., & Tamura, Y. (2009). Effect of resistance exercise training combined with relatively low vascular occlusion. Journal of Science and Medicine in Sport, 12(1), 107-112.
    Törpel, A., Herold, F., Hamacher, D., Müller, N. G., & Schega, L. (2018). Strengthening the brain—is resistance training with blood flow restriction an effective strategy for cognitive improvement? Journal of Clinical Medicine, 7(10), 337.
    Takano, H., Morita, T., Iida, H., Asada, K.-i., Kato, M., Uno, K., Hirose, K., Matsumoto, A., Takenaka, K., & Hirata, Y. (2005). Hemodynamic and hormonal responses to a short-term low-intensity resistance exercise with the reduction of muscle blood flow. European Journal of Applied Physiology, 95(1), 65-73.
    Takarada, Y., Nakamura, Y., Aruga, S., Onda, T., Miyazaki, S., & Ishii, N. (2000). Rapid increase in plasma growth hormone after low-intensity resistance exercise with vascular occlusion. Journal of Applied Physiology, 88(1), 61-65.
    Takarada, Y., Takazawa, H., Sato, Y., Takebayashi, S., Tanaka, Y., & Ishii, N. (2000). Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. Journal of Applied Physiology, 32(12), 2035-2039.
    Takehara, N., Tsubaki, A., Yamazaki, Y., Kanaya, C., Sato, D., Morishita, S., & Onishi, H. (2017). Changes in oxyhemoglobin concentration in the prefrontal cortex and primary motor cortex during low-and moderate-intensity exercise on a cycle ergometer. In Oxygen Transport to Tissue XXXIX (pp. 241-247). Springer.
    Tarvainen, M. P., & Niskanen, J.-P. (2012). Kubios HRV. Finland: Biosignal Analysis and Medical Imaging Group (BSAMIG), Department of Applied Physics, University of Eastern Finland, 39.
    Tarvainen, M. P., Niskanen, J.-P., Lipponen, J., Ranta-Aho, P., & Karjalainen, P. (2008). Kubios HRV—A software for advanced heart rate variability analysis. 4th European Conference of the International Federation for Medical and Biological Engineering,
    Tellis, G. M., Vitale, C., & Murgallis, T. (2015). Near infrared spectroscopy (NIRS): a pilot study to measure hemoglobin concentration changes in the brains of persons who stutter and typically fluent speakers. Procedia-Social and Behavioral Sciences, 193, 261-265.
    Thayer, J. F., & Lane, R. D. (2000). A model of neurovisceral integration in emotion regulation and dysregulation. Journal of Affective Disorders, 61(3), 201-216.
    Thayer, J. F., & Lane, R. D. (2009). Claude Bernard and the heart–brain connection: Further elaboration of a model of neurovisceral integration. Neuroscience & Biobehavioral Reviews, 33(2), 81-88.
    Tombu, M., & Jolicœur, P. (2003). A central capacity sharing model of dual-task performance. Journal of Experimental Psychology: Human Perception and Performance, 29(1), 3.
    Trost, S. G., Owen, N., Bauman, A. E., Sallis, J. F., & Brown, W. (2002). Correlates of adults’ participation in physical activity: review and update. Medicine & Science in Sports & Exercise, 34(12), 1996-2001.
    Tsukamoto, H., Suga, T., Ishibashi, A., Takenaka, S., Tanaka, D., Hirano, Y., Hamaoka, T., Goto, K., Ebi, K., & Isaka, T. (2018). Flavanol-rich cocoa consumption enhances exercise-induced executive function improvements in humans. Nutrition, 46, 90-96.
    Tsukamoto, H., Suga, T., Takenaka, S., Tanaka, D., Takeuchi, T., Hamaoka, T., Isaka, T., & Hashimoto, T. (2016). Greater impact of acute high-intensity interval exercise on post-exercise executive function compared to moderate-intensity continuous exercise. Physiology & Behavior, 155, 224-230.
    Tsukamoto, H., Suga, T., Takenaka, S., Tanaka, D., Takeuchi, T., Hamaoka, T., Isaka, T., Ogoh, S., & Hashimoto, T. (2016). Repeated high-intensity interval exercise shortens the positive effect on executive function during post-exercise recovery in healthy young males. Physiology & Behavior, 160, 26-34.
    Tsukamoto, H., Takenaka, S., Suga, T., Tanaka, D., Takeuchi, T., Hamaoka, T., Isaka, T., & Hashimoto, T. (2017). Impact of Exercise Intensity and Duration on Postexercise Executive Function. Medicine and Science in Sports and Exercise, 49(4), 774-784.
    VaezMousavi, S., Barry, R. J., & Clarke, A. R. (2009). Individual differences in task-related activation and performance. Physiology & Behavior, 98(3), 326-330.
    Van Hall, G., Stømstad, M., Rasmussen, P., Jans, Ø., Zaar, M., Gam, C., Quistorff, B., Secher, N. H., & Nielsen, H. B. (2009). Blood lactate is an important energy source for the human brain. Journal of Cerebral Blood Flow & Metabolism, 29(6), 1121-1129.
    Vazzana, R., Bandinelli, S., Lauretani, F., Volpato, S., Lauretani, F., Di Iorio, A., Abate, M., Corsi, A. M., Milaneschi, Y., & Guralnik, J. M. (2010). Trail Making Test predicts physical impairment and mortality in older persons. Journal of the American Geriatrics Society, 58(4), 719-723.
    Wahid, A., Manek, N., Nichols, M., Kelly, P., Foster, C., Webster, P., Kaur, A., Friedemann Smith, C., Wilkins, E., & Rayner, M. (2016). Quantifying the association between physical activity and cardiovascular disease and diabetes: a systematic review and meta‐analysis. Journal of the American Heart Association, 5(9), e002495.
    Wang, C.-A., Baird, T., Huang, J., Coutinho, J. D., Brien, D. C., & Munoz, D. P. (2018). Arousal effects on pupil size, heart rate, and skin conductance in an emotional face task. Frontiers in Neurology, 1029.
    Worringer, B., Langner, R., Koch, I., Eickhoff, S. B., Eickhoff, C. R., & Binkofski, F. C. (2019). Common and distinct neural correlates of dual-tasking and task-switching: a meta-analytic review and a neuro-cognitive processing model of human multitasking. Brain Structure and Function, 224(5), 1845-1869.
    Ysehak Abay, T., Shafqat, K., & Kyriacou, P. A. (2019). Perfusion changes at the forehead measured by photoplethysmography during a head-down tilt protocol. Biosensors, 9(2), 71.
    Zeki Al Hazzouri, A., Haan, M. N., Deng, Y., Neuhaus, J., & Yaffe, K. (2014). Reduced heart rate variability is associated with worse cognitive performance in elderly Mexican Americans. Hypertension, 63(1), 181-187.
    Zhang, S., Hu, S., Chao, H. H., Luo, X., Farr, O. M., & Chiang-shan, R. L. (2012). Cerebral correlates of skin conductance responses in a cognitive task. Neuroimage, 62(3), 1489-1498.

    無法下載圖示 校內:2027-08-17公開
    校外:2027-08-17公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE