簡易檢索 / 詳目顯示

研究生: 陳俊仁
Chen, Chun-Jen
論文名稱: EDM法製備純Sn及Sn-xSb粉末負極材料之充放電特性探討
The Charge-Discharge Characteristics of Sn and Sn-xSb Lithium Ion Battery Anode Powder Prepared by EDM
指導教授: 陳立輝
Chen, Li-Hui
呂傳盛
Lui, Truan-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 68
中文關鍵詞: 放電加工鋰離子電池負極
外文關鍵詞: Lithium ion battery, Anode, EDM
相關次數: 點閱:86下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   Sn作為鋰離子二次電池負極材料具有高電容量的優點,但Sn經過數次充放電後,因體積變化過於激烈,導致極片表面產生裂紋,循環性不佳,因此必須添加其它元素來抑制體積變化,如Sb、Cu或混合SnO2。本研究採用放電加工(Electrical Discharge Machining, EDM)法製備Sn、Sn-15Sb及Sn-40Sb負極材料粉末,探討不同組成之負極材料粉末以及氧化層對充放電循環特性之影響。
      EDM法製得之Sn負極材料粉末形貌多數為圓球狀,少部份為不規則狀;而Sn-xSb負極材料粉末則多數為不規則狀。粉末表面則因EDM製程特性而有氧化層的產生。
      充放電循環測試結果發現Sn-xSb的充放電循環性均明顯優於Sn。Sn-15Sb在30次循環以前的放電電容量優於Sn-40Sb,而30-50次循環則是Sn-15Sb略低於Sn-40Sb,但兩者之充放電循環性則沒有明顯的差異。另外Sn-15Sb充放電初期可發現類似鎳氫電池之活化現象,比對Sn-15Sb與Sn-40Sb初期循環之嵌鋰曲線後,推測Sn-15Sb之活化現象乃是由於表面之氧化層所導致。

     Sn as an anode material for lithium-ion rechargeable batteries has the advantage of its high capacity. However, cracks occur on the surface of the Sn anode as a result of drastic volume expansion during charge-discharge cycling. They undermine the cyclability of Sn and make it necessary to effectively restrict the volume expansion of Sn by adding other elements such as Sb, Cu and SnO2. In this study, the effects of anode materials in different compositions and oxidized layers on charge-discharge characteristics are examined by using Sn, Sn-15Sb and Sn-40Sb in powder form prepared with electrical discharge machining (EDM).
     Most of the Sn powder prepared with EDM is spherical and a small part of it is irregular. Most of the Sn-xSb powder is irregular. The EDM process also contributes to the formation of oxidized layers on powder surfaces.
     The results of a charge-discharge cycling test reveal that the Sn-xSb anode had better charge-discharge cyclability than the Sn anode. The former has higher discharge capacity than the latter before the 30th cycles. However, the Sn-40Sb anode has slightly lower discharge capacity compared to the Sn-15Sb anode between the 30th and the 50th cycles. Nevertheless, there is no significant difference in the charge-discharge cyclability between the two. In addition, activation similar to that in Ni/MH batteries is observed during initial charge-discharge cycling of the Sn-15Sb anode. A comparison between the charge–discharge curves of the Sn-15Sb and Sn-40Sb anodes during the initial two cycles suggests that the activation is caused by the oxidized layer on the surface of the Sn-15Sb anode.

    中文摘要 ....................................................................I Abstract ......................................................................II 誌謝 ..........................................................................III 總目錄 ......................................................................IV 表目錄 ......................................................................VI 圖目錄 .....................................................................VII 第一章 前言 ..............................................................1 1-1 鋰離子二次電池簡介 .........................................1 1-2 放電加工法簡介 .................................................2 第二章 文獻回顧 ......................................................3 2-1 放電加工法簡介 .................................................3 2-1-1 EDM工作原理 ...............................................3 2-1-2 EDM法製備粉末之研究現況回顧 ...............3 2-2 鋰離子二次電池及其工作原理 ..........................4 2-3 鋰離子電池之負極材料 ......................................5 2-3-1 錫基複合合金電極材料 ................................6 2-3-2 錫基氧化物電極材料 ....................................7 2-3-3 複合式錫基粉末電極材料 ............................8 第三章 實驗步驟與方法 ..........................................13 3-1 負極材料粉末之製備 .........................................13 3-2 負極材料之分析 .................................................13 3-2-1 負極材料粉末之形貌觀察 ...........................13 3-2-2 負極材料之性質分析 ...................................14 3-3 負極極片之製作與電池組裝 .............................15 3-4 充放電測試 .........................................................15 第四章 實驗結果 .......................................................20 4-1 負極材料粉末外觀形貌觀察 ..............................20 4-2 負極材料粉末之性質分析 ..................................20 4-3 負極材料粉末表面之AES分析結果 ...................22 4-4 負極材料粉末之充放電循環電容量性質 ..........22 4-5 負極材料粉末之嵌鋰曲線 ..................................23 第五章 討論 ...............................................................48 5-1 EDM製備之負極材料粉末性質探討 ..................48 5-2 充放電循環特性之探討 ......................................49 5-3 氧化層對充放電循環特性影響之探討 ..............50 第六章 結論 ................................................................57 參考文獻 .....................................................................58

    1.G. Pistoria, “Lithium Batteries:New Materials, Developments and Perspectives”, Elsevier, (1994), pp. 3-10.
    2.J. A. McGeough, “Advanced Methods of Machining”, London, Chapman and Hall, (1988), pp. 128-152.
    3.S. Singh, S. Maheshwari, P. C. Pandey, “Some Investigations into the Electric Discharge Machining of Hardened Tool Steel Using Different Electrode Materials”, Journal of Materials Processing Technology, Vol. 149 (2004), pp. 272-277.
    4.J. D. Ayers, K. Moore, “Formation of Metal Carbide Powder by Spark Machining of Reactive Metals”, Metallurgical Transactions A, Vol. 15A (1984), pp. 1117-1127.
    5.J. L. Walter, “Preparation of Powder by Spark Erosion”, Powder Metallurgy, Vol. 31 (1988), pp.267-272.
    6.L. K. Kurihara, G. M. Chow, P. E. Schoen, “Nanocrystalline Metallic Powders and Films Produced by the Polyol Method”, NanoStructured Materials, Vol. 11 (1995), pp. 607-613.
    7.V. S. R. Murti, P. K. Phillip, “An Analysis of the Debris in Ultrasonic-Assisted Electrical Discharge Machining”, Wear, Vol. 117 (1987), pp. 241-250.
    8.A. K. Khanra, L. C. Pathak, M. M. Godkhindi, “Microanalysis of Debris Formed during Electrical Discharge Machining (EDM)”, Journal of Materials Science, Vol. 42 (2007), pp. 872-877.
    9.J. K. Lung, J. C. Huang, D. C. Tien, C. Y. Liao, K. H. Tseng, T. T. Tsung, W. S. Kao, T. H. Tsai, C. S. Jwo, H. M. Lin, L. Stobinski, “Preparation of Gold Nanoparticles by Arc Discharge in Water”, Journal of Alloys and Compounds, Vol. 434 (2007), pp. 655-658.
    10.C. H. Lo, T. T. Tsung, H. M. Lin, “Preparation of Silver Nanofluid by the Submerged Arc Nanoparticle Synthesis System (SANSS)”, Journal of Alloys and Compounds, Vol. 434 (2007), pp. 659-662.
    11.C. H. Lo, T. T. Tsung, L. C. Chen, “Shape-Controlled Synthesis of Cu-Based Nanofluid Using Submerged Arc Nanoparticle Synthesis System (SANSS)”, Journal of Crystal Growth, Vol. 277 (2005), pp. 636-642.
    12.Q. H. Zhang, R. Du, J. H. Zhang, Q. B. Zhang, “An Investigation of Ultrasonic-Assisted Electrical Discharge Machining in Gas”, International Journal of Machine Tools and Manufacture, Vol. 46 (2006), pp. 1582-1588.
    13.Y. C. Lin, B. H. Yan, Y. S. Chang, “Machining Characteristics of Titanium Alloy (Ti-6Al-4V) Using a Combination Process of EDM with USM”, Journal of Materials Processing Technology, Vol. 104 (2000), pp. 171-177.
    14.B. H. Yan, C. C. Wang, “The Machining Characteristics of Al2O3/6061 Al Composite Using Rotary Electro-Discharge Machining with a Tube Electrode”, Journal of Materials Processing Technology, Vol. 95 (1999), pp. 222-231.
    15.B. Scrosati, “Lithium Rocking Chair Batteries:An Old Concept?”, Journal of the Electrochemical Society , Vol. 139 (1992), pp. 2776-2780.
    16.S. Megahed, B. Scrosati, “Lithium-Ion Rechargeable Batteries”, Journal of Power Sources, Vol. 51 (1994), pp. 79-104.
    17.M. Wakihara, “Recent Developments in Lithium Ion Batteries”, Materials Science and Engineering R, Vol. 33 (2001), pp. 109-134.
    18.A. M. Wilson, J. R. Dahn, “Lithium Insertion in Carbons Containing Nanodispersed Silicon”, Journal of the Electrochemical Society, Vol. 142 (1995), pp. 326-332.
    19.H. Li, X. Huang, L. Chen, Z, Wu, Y. Liang, “A High Capacity Nano-Si Composite Anode Material for Lithium Rechargeable Batteries”, Electrochemical and Solid-State Letters, Vol. 2 (1999), pp. 547-549.
    20.I. S. Kim, P. N. Kumta, G. E. Blomqren, “Si/TiN Nanocomposites Novel Anode Materials for Li-Ion Batteries”, Electrochemical and Solid-State Letters, Vol. 3 (2000), pp. 493-496.
    21.R. Alcántara, F. J. Fernández-Madrigal, P. Lavela, J. L. Tirado, J. C. Jumas, J. Olivier-Fourcade, “Electrochemical Reaction of Lithium with the CoSb3 Skutterudite”, Journal of Materials Chemistry, Vol. 9 (1999), pp. 2517-2521.
    22.J. Xie, G. S. Cao, Y. D. Zhong, X. B. Zhao, “Capacity Fade Mechanism of CoSb3 Intermetallic Compound”, Journal of Electroanalytical Chemistry, Vol. 568 (2004), pp. 323-327.
    23.S. Sharma, L. Fransson, E. Sjostedt, L. Nordstrom, B. Johansson, K. Edstrom, “A Theoretical and Experimental Study of the Lithiation of '-Cu6Sn5 in a Lithium-Ion Battery”, Journal of the Electrochemical Society , Vol. 150 (2003), pp. 330-334.
    24.F. S. Ke, L. Huang, J. S. Cai, S. G. Sun, “Electroplating Synthesis and Electrochemical Properties of Macroporous Sn-Cu Alloy Electrode for Lithium-Ion Batteries”, Electrochimica Acta, Vol. 52 (2007), pp. 6741-6747.
    25.Y. L. Kim, H. Y. Lee, S. W Jang, S. J. Lee, H. K. Baik, Y. S. Yoon, Y. W. Jang, S. M. Lee, S. J. Lee, H. K. Baik, “Lithium Storage Properties of Nanocrystalline Ni3Sn4 Alloys Prepared by Mechanical Alloying”, Journal of Power Sources, Vol. 112 (2002), pp. 8-12.
    26.I. Amadei, S. Panero, B. Scrosati, G. Cocco, L. Schiffini, “The Ni3Sn4 Intermetallic as a Novel Electrode in Lithium Cells”, Journal of Power Sources, Vol. 143 (2005), pp. 227-230.
    27.Y. L. Kim, H. Y. Lee, S. W Jang, S. J. Lee, H. K. Baik, Y. S. Yoon, Y. S. Park, S. M. Lee, “Nanostructured Ni3Sn2 Thin Film as Anodes for Thin Film Rechargeable Lithium Batteries”, Solid State Ionics, Vol. 160 (2003), pp. 235-240.
    28.J. Yang, Y. Takeda, N. Imanishi, J. Y. Xie, O. Yamamoto, “Intermetallic SnSbx Compounds for Lithium Insertion Hosts”, Solid State Ionics, Vol. 133 (2000), pp. 189-194.
    29.L. Fang, B. V. R. Chowdari, “Sn-Ca Amorphous Alloy as Anode for Lithium Ion Battery”, Journal of Power Sources, Vol. 97-98 (2001), pp. 181-184.
    30.H. Kim, Y. J. Kim, D. G. Kim, H. J. Sohn, T. Kang, “Mechanochemical Synthesis and Electrochemical Characteristics of Mg2Sn as An Anode Material for Li-Ion Batteries”, Solid State Ionics, Vol. 144 (2001),.pp. 41-49.
    31.J. Yin, M. Wada, S. Yosbida, K. Isbibara, S. Tanase, T. Sakai, “New Ag-Sn Alloy Anode Materials for Lithium-Ion Batteries”, Journal of the Electrochemical Society, Vol. 150 (2003), pp. A1129-A1135.
    32.H. Sakaguchi, H. Honda, Y. Akasaka, T. Esaka, “Ce-Sn Intermetallic Compounds as New Anode Materials for Rechargeable Lithium Batteries”, Journal of Power Sources, Vol. 119-121 (2003), pp. 50-55.
    33.J. T. Vaughey, J. O’ Hara, M. M. Thackeray, “Intermetallic Insertion Electrodes with a Zinc Blende-Type Structure for Li Batteries:A Study of LixInSb (0 ≦ x ≦ 3)”, Electrochemical and Solid-State Letters, Vol. 3 (2000), pp. 13-16.
    34.C. Wang, A. J. Applebya, F. E. Little, “Electrochemical Study on Nano-Sn, Li4.4Sn and AlSi0.1 Powders Used as Secondary Lithium Battery Anodes”, Journal of Power Sources, Vol. 93 (2001), pp. 174-185.
    35.J. Shu, X. Q. Cheng, P. F. Shi, S. B. Ma, “Preparation and Improvement of Cu-Sn Alloy Negative Electrode for Lithium Ion Batteries”, Chinese Journal of Power Sources, Vol. 29 No. 4 (2005), pp. 217-226.
    36.J. Shu, X. Q. Cheng, P. F. Shi, S. B. Ma, “Study on Eletrochemical Performance of Cu-Sn-Sb Ternary Composite Electrode”, Chinese Journal of Power Sources, Vol. 29 No. 5 (2005), pp. 301-306.
    37.S. Naille, C. M. Ionica-Bousquet, F. Robert, F. Morato, P. E. Lippens, J. Olivier-Fourcade, “Sn-Based Intermetallic Materials: Performances and Mechanisms”, Journal of Power Sources, Vol. 174 (2007), pp. 1091-1094.
    38.M. M. Thackeray, J. T. Vaughey, C. S. Johnson, A .J. Kropf, R. Benedek, L. M. L. Fransson, K. Edstrom, “Structural Considerations of Intermetallic Electrodes for Lithium Batteries”, Journal of Power Sources, Vol. 113 (2003), pp. 124-130.
    39.J. L. Tirado, “Inorganic Materials for the Negative Electrode of Lithium-Ion Batteries:State-of-the-Art and Future Prospects” Materials Science and Engineering R, Vol. 40 (2003), pp. 103-136.
    40.H. Zhao, D. H. L. Ng, Z. Lua, N Ma, “Carbothermal Synthesis of SnxSb Anode Material for Secondary Lithium-Ion Battery”, Journal of Alloys and Compounds (2005), Vol. 395, pp. 192-200.
    41.X. Q. Cheng, P. F. Shi, “Study on the Tin-Based Anode for Li-Ion Battery”, Chinese Journal of Power Sources, Vol. 27 (2003), pp. 172-174.
    42.A. Sivashanmugam, T. P. Kumar, N. G. Renganathan, S. Gopukumar, M. Wohlfahrt-Mehrens, J. Garche, “Electrochemical Behavior of Sn/SnO2 Mixtures for Use as Anode in Lithium Rechargeable Batteries”, Journal of Power Sources, Vol. 144 (2005), pp. 197-203.
    43.I. A. Courtney, J. R. Dahn, “Electrochemical and In Situ X-Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites”, Journal of Electrochemical Society, Vol. 144, No. 6 (1997), pp. 2045-2052.
    44.L. Yuan, K. Konstantinov, G. X. Wang, H. K. Liu, S. X. Dou, “Nano-Structured SnO2-Carbon Composites Obtained by In Situ Spray Pyrolysis Method as Anodes in Lithium Batteries”, Journal of Power Sources, Vol. 146 (2005), pp. 180-184.
    45.J. J. Lee, S. H. Kim, S. H. Jee, Y. S. Yoon, W. I. Cho, S. J. Yoon, J. W. Choi, S. C. Nam, “Characteristics of Sn/Li2O Multilayer Composite Anode for Thin Film Microbattery”, Journal of Power Sources, Vol. 178 (2008), pp. 434-438.
    46.Z. Wang, W. Tian, X. Li, “Synthesis and Electrochemistry Properties of Sn–Sb Ultrafine Particles as Anode of Lithium-Ion Batteries”, Journal of Alloys and Compounds Vol. 439 (2007), pp. 350-354.
    47.M. Winter, J. O. Besenhard, “Electrochemical Lithiation of Tin and Tin-Based Intermetallics and Composites”, Electrochimica Acta, Vol. 45 (1999), pp. 31-50.
    48.M. Wachtler, M. Winter, J. O. Besenhard, “Anodic Materials for Rechargeable Li-Batteries”, Journal of Power Sources, Vol. 105 (2002), pp. 151-160.
    49.T. A. G. Restivo, S. L. Silva, “Specific Surface Area Determination by TG/DSC”, Thermochimica Acta, Vol. 328 (1999), pp. 47-53.
    50.G. Zhang, K. Huang, S. Liu, W. Zhang, B. Gong, “Comparison of the Electrochemical Performance of Mesoscopic Cu2Sb, SnSb and Sn/SnSb Alloy Powders”, Journal of Alloys and Compounds, Vol. 426 (2006), pp. 432-437.

    下載圖示 校內:2010-07-25公開
    校外:2010-07-25公開
    QR CODE