簡易檢索 / 詳目顯示

研究生: 蕭智翔
Shiau, Jr-Shiang
論文名稱: 利用壓電光電子效應提升氧化鎂鋅薄膜於矽基板與聚醯亞胺基板之紫外光感測效率
UV Sensitivity Enhancement of MgZnO Thin Films on Si or PI substrates via Piezophototronic Effect
指導教授: 黃肇瑞
Huang, Jow-Lay
共同指導教授: 劉全璞
Liu, Chuan-Pu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 122
中文關鍵詞: 氧化鋅氧化鎂鋅壓電光電子效應紫外光偵測器
外文關鍵詞: ZnO, MgZnO, piezophototronic, magnetron sputtering, photodetector
相關次數: 點閱:91下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧化鋅(Zinc oxide, ZnO) 是一種n型直接能隙半導體材料,具有寬能隙(3.3eV)及顯著的C軸優選成長方向而有優異壓電及壓光效應,因此適合做為奈米發電機、發光二極體、或紫外光感測器等光電元件。近年來臭氧層破洞與氣候變遷,導致深紫外光波段的UV-A和UV-B 影響著地球的整個生態系統,對人類來說,若不做好防曬及防護措施,長期照射下,將對於人體健康亦有所危害,因此需製備UV-B(320~280nm)紫外光感測器。
    本實驗透過元素合金化提升氧化鋅材料的能隙(3.3eV),使用氧化鎂鋅的材料系統能有效調整能隙(3.3~7.7eV)藉由調整鋅與鎂的比例,進而能達到深紫外光波段,此外材料系統具有獨特性質,例如:本質遮蔽可見光,相對低溫薄膜合成與可用的晶格匹配基板,因此其薄膜結構在紫外光發光與偵測元件的應用受到很大的重視。根據實驗結果顯示,發現以Mg0.3Zn0.7O為靶材並且改變基板溫度(25~250℃)所沉積的薄膜能有效調變鎂含量,沉積於矽基板薄膜中鎂的含量變化為40.7~51at.%,當基板溫度為200℃(Mg 47.6at.%)薄膜生成第二相立方晶體結構,進而影響薄膜壓電與光電性質。根據顯微結構分析,發現本實驗藉由鍍膜參數的調控,成功合成出具有奈米柱狀晶的氧化鎂鋅薄膜,該結構具有顯著的氧氣吸脫附機制,進而有利於延長載子壽命提升原件的光電性質。本實驗亦沉積氧化鎂鋅薄膜於聚醯亞胺基板,為耐熱性高分子材料同時具備優良的光學及電氣絕緣特性以及機械性質等優點,未來光電產業發展穿戴式與可饒式元件,以該基板為基底之元件將會很有競爭力,氧化鎂鋅薄膜鎂含量變化量小(38.5~44at.%)沒有相轉化發生,並且結晶態保持Wurtzite結構,具有C軸的高度不對稱性將有利於產生壓電特性能調控元件之光電傳輸特性,進而結合於近年來發展出之壓電電子(Piezotronic)和壓電光電子(Piezo-phototronic)效應來提升元件之性質表現。
    本實驗將氧化鎂鋅薄膜製備成蕭特基接觸指叉式紫外光偵測器,實驗結果顯示,當基板溫度為150℃沉積於矽基板的氧化鎂鋅薄膜(Mg 43.7at.%)具有最優異光電特性,同時具有最佳壓電係數,因此選用此參數薄膜施予壓電光電子效應與光響應之量測,並且與基板溫度同為150℃沉積於聚醯亞胺基板的氧化鎂鋅薄膜(Mg 42.8at.%)進行性質比較。由光響應量測結果顯示,矽基板/聚醯亞胺基板元件在波長291nm/295nm處具有最大響應值,並且具有優異鑑別率(Rejection ratio)與靈敏度(Sensitivity),結果證實原件具有偵測深紫外光UV-B之能力。

    We demonstrate the growth of high quality, single phase, wurtzite MgZnO nanorod array thin films on p-type Si (111) and polyimide substrates by magnetron sputtering using Mg0.3Zn0.7O as a target. The films are composed of nanorod arrays highly oriented along the c-axis without any buffer layer. The Mg content of the MgZnO alloys on Si/PI substrate can be varied in a large range 40.7-51 at.%/38.5-44 at.% by changing the substrate temperature from 25 to 250 ºC. The heterostructures of MgZnO/Si and MgZnO/PI, deposited at 150 ºC were fabricated into metal-semiconductor-metal photodetectors. The sensitivity of the Si/PI based device is as high as 4.3×104 %/1×103 % at 2 V bias under 325 nm laser at a relatively low illumination intensity (2.77 mW) and the output photocurrent increased with an increase in the UV illumination intensity at both -10 and +10 V biased voltage. The responsivity of the Si/PI based device 4.6 A/W/0.3mA/W is achieved at 292/295 nm with a cutoff wavelength of 305/310 nm and a bias voltage of 9 V. The UV responsivity of Si/PI based photodetectors were enhanced by tuning the SBH 2.6meV/13meV when a compressive strain was applied on the device under piezo-phototronic effect.

    總目錄 摘要 I Extended Abstract III 致謝 XV 總目錄 XVII 圖目錄 XXI 表目錄 XXVII 第一章、緒論 1 1-1 前言 1 1-2研究動機與目的 3 第二章、文獻回顧 6 2-1磁控濺鍍系統 6 2-2氧化鋅晶體結構與特性 9 2-2-1晶體結構與能帶結構 9 2-2-2表面極性與壓電特性 14 2-2-3本質缺陷 17 2-3氧化鎂鋅合金系統 19 2-4氧化鎂鋅之紫外光偵測器 22 2-4-1光偵測器原理基礎 22 2-4-2氧化鎂鋅紫外光偵測器性質比較 23 2-5壓電電子與壓電光電子效應 28 2-5-1壓電勢誘發閘極效應 28 2-5-2壓電光電子應用於紫外光偵測器 31 第三章、研究方法與實驗步驟 36 3-1 實驗流程圖 36 3-2 實驗材料與實驗設備 37 3-3濺鍍步驟與條件 38 3-4 薄膜性質分析 38 3-4-1 X-ray 繞射分析 38 3-4-2 薄膜形貌微結構分析 39 3-4-3 表面粗糙度分析 41 3-4-4 元素成份與化學鍵結分析 42 3-4-5 薄膜壓電係數分析 42 3-5 元件光電特性分析 43 3-5-1 元件製作 43 3-5-2 紫外光感測 44 3-5-3壓電光電子量測 45 第四章、薄膜成長之結果與討論 46 4-1 氧化鎂鋅薄膜成長於矽基板之特性分析 46 4-1-1 XRD晶體結構分析 46 4-1-2 元素成份分析 49 4-1-3 表面形貌及橫截面微結構分析 50 4-1-4 薄膜橫截面微結構TEM分析 51 4-1-5. 表面粗糙度分析 59 4-1-6. 化學鍵結分析 59 4-1-7. 壓電係數分析 60 4-2氧化鎂鋅薄膜成長於聚醯亞胺基板之特性分析 67 4-2-1 XRD晶體結構分析 67 4-2-2 元素成份分析 70 4-2-3 表面形貌與橫截面微結構分析 70 4-2-4 表面粗糙度分析 76 4-2-5 化學鍵結分析 76 4-2-6 壓電係數分析 77 第五章、紫外光偵測器之光電特性結果與討論 82 5-1 氧化鎂鋅薄膜成長於矽基板應用於紫外光偵測器的光電特性分析 82 5-1-1 電流-電壓特性-暗電流之量測 82 5-1-2 電流-電壓特性-不同光強度之光電流量測 86 5-1-3 光響應之量測 90 5-1-4 壓電光電子效應之應用 92 5-2 氧化鎂鋅薄膜成長於聚醯亞胺基板應用紫外光偵測器的光電特性分析 101 5-2-1 電流-電壓特性-暗電流量測 101 5-2-2電流-電壓特性-不同光強度之光電流量測 102 5-2-3光響應之量測 106 5-2-4壓電光電子效應之應用 109 第六章、結論 114 參考文獻 116

    [1] A. Janotti, C.G. Van de Walle, Fundamentals of zinc oxide as a semiconductor, Rep Prog Phys, 72 (2009).
    [2] E. Monroy, F. Omnes, F. Calle, Wide-bandgap semiconductor ultraviolet photodetectors, Semicond Sci Tech, 18 (2003) R33-R51.
    [3] U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, A comprehensive review of ZnO materials and devices, J Appl Phys, 98 (2005).
    [4] R. Suzuki, S. Nakagomi, Y. Kokubun, N. Arai, S. Ohira, Enhancement of responsivity in solar-blind beta-Ga2O3 photodiodes with a Au Schottky contact fabricated on single crystal substrates by annealing, Appl Phys Lett, 94 (2009).
    [5] E.V. Gorokhov, A.N. Magunov, V.S. Feshchenko, A.A. Altukhov, Solar-blind UV flame detector based on natural diamond, Instrum Exp Tech+, 51 (2008) 280-283.
    [6] I.K. Sou, M.C.W. Wu, T. Sun, K.S. Wong, G.K.L. Wong, Molecular-beam-epitaxy-grown ZnMgS ultraviolet photodetectors, Appl Phys Lett, 78 (2001) 1811-1813.
    [7] T. Tut, S. Butun, B. Butun, M. Gokkavas, H.B. Yu, E. Ozbay, Solar-blind AlxGa1-xN-based avalanche photodiodes, Appl Phys Lett, 87 (2005).
    [8] J. Xing, E. Guo, K.J. Jin, H.B. Lu, J. Wen, G.Z. Yang, Solar-blind deep-ultraviolet photodetectors based on an LaAlO3 single crystal, Opt Lett, 34 (2009) 1675-1677.
    [9] Z.G. Ju, C.X. Shan, D.Y. Jiang, J.Y. Zhang, B. Yao, D.X. Zhao, D.Z. Shen, X.W. Fan, Mg(x)Zn(1-x)O-based photodetectors covering the whole solar-blind spectrum range, Appl Phys Lett, 93 (2008).
    [10] K. Nakahara, S. Akasaka, H. Yuji, K. Tamura, T. Fujii, Y. Nishimoto, D. Takamizu, A. Sasaki, T. Tanabe, H. Takasu, H. Amaike, T. Onuma, S.F. Chichibu, A. Tsukazaki, A. Ohtomo, M. Kawasaki, Nitrogen doped MgxZn1-xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates, Appl Phys Lett, 97 (2010).
    [11] A. Seko, F. Oba, A. Kuwabara, I. Tanaka, Pressure-induced phase transition in ZnO and ZnO-MgO pseudobinary system: A first-principles lattice dynamics study, Phys Rev B, 72 (2005).
    [12] A. Seko, Exploring Structures and Phase Relationships of Ceramics from First Principles, J Am Ceram Soc, 93 (2010) 1201-1214.
    [13] W. Yang, S.S. Hullavarad, B. Nagaraj, I. Takeuchi, R.P. Sharma, T. Venkatesan, R.D. Vispute, H. Shen, Compositionally-tuned epitaxial cubic MgxZn1-xO on Si(100) for deep ultraviolet photodetectors, Appl Phys Lett, 82 (2003) 3424-3426.
    [14] K.W. Liu, D.Z. Shen, C.X. Shan, J.Y. Zhang, D.Y. Jiang, Y.M. Zhao, B. Yao, D.X. Zhao, The growth of ZnMgO alloy films for deep ultraviolet detection, J Phys D Appl Phys, 41 (2008).
    [15] Y.Y. Kim, B.H. Kong, M.K. Choi, H.K. Cho, Influence of Mg composition on the characteristics of MgZnO/ZnO heterostructures grown by co-sputtering, Mater Sci Eng B-Adv, 165 (2009) 80-84.
    [16] Z.L. Wang, Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics, Nano Today, 5 (2010) 540-552.
    [17] Z.L. Wang, Piezotronic and Piezophototronic Effects, J Phys Chem Lett, 1 (2010) 1388-1393.
    [18] S.C. Rai, K. Wang, Y. Ding, J.K. Marmon, M. Bhatt, Y. Zhang, W.L. Zhou, Z.L. Wang, Piezo-phototronic Effect Enhanced UV/Visible Photodetector Based on Fully Wide Band Gap Type-II ZnO/ZnS Core/Shell Nanowire Array, Acs Nano, 9 (2015) 6419-6427.
    [19] M. Razeghi, A. Rogalski, Semiconductor ultraviolet detectors, J Appl Phys, 79 (1996) 7433-7473.
    [20] E. Monroy, F. Calle, J.L. Pau, E. Munoz, F. Omnes, B. Beaumont, P. Gibart, AlGaN-based UV photodetectors, J Cryst Growth, 230 (2001) 537-543.
    [21] 羅砚, 濺鍍成長氧化鎂鋅薄膜之微結構及光學性質, 國立成功大學材料科學與工程學系(所)碩士論文, DOI (2010).
    [22] D.J. Liaw, K.L. Wang, Y.C. Huang, K.R. Lee, J.Y. Lai, C.S. Ha, Advanced polyimide materials: Syntheses, physical properties and applications, Prog Polym Sci, 37 (2012) 907-974.
    [23] B. Chapman, Glow Discharge Processes, John Wiley and Sons, New York, DOI (1980).
    [24] S.M.R.e. al., Handbook of Plasma Processing Technology, Noyes Publications, Park Ridge, New Jersey, U.S.A., DOI (1982).
    [25] M.C. Caofeng Pan , Ruomeng Yu , Qing Yang , Youfan Hu , Yan Zhang ,, a.Z.L. Wang, Progress in Piezo-Phototronic-Effect-Enhanced Light-Emitting Diodes and Pressure Imaging, Adv Mater, DOI (2015).
    [26] S. Bloom, Ortenbur.I, Pseudopotential Band-Structure of Zno, Physica Status Solidi B-Basic Research, 58 (1973) 561-566.
    [27] J. Zhou, Y.D. Gu, P. Fei, W.J. Mai, Y.F. Gao, R.S. Yang, G. Bao, Z.L. Wang, Flexible piezotronic strain sensor, Nano Letters, 8 (2008) 3035-3040.
    [28] Z.L. Wang, Towards Self-Powered Nanosystems: From Nanogenerators to Nanopiezotronics, Adv Funct Mater, 18 (2008) 3553-3567.
    [29] Z.Y. Gao, J. Zhou, Y.D. Gu, P. Fei, Y. Hao, G. Bao, Z.L. Wang, Effects of piezoelectric potential on the transport characteristics of metal-ZnO nanowire-metal field effect transistor (vol 105, 113707, 2009), J Appl Phys, 106 (2009).
    [30] F. Bernardini, V. Fiorentini, D. Vanderbilt, Spontaneous polarization and piezoelectric constants of III-V nitrides, Phys Rev B, 56 (1997) 10024-10027.
    [31] S.E. Harrison, Conductivity and Hall Effect of Zno at Low Temperatures, Phys Rev, 93 (1954) 52-62.
    [32] N. Palakawong, J. Jutimoosik, J. T-Thienprasert, S. Rujirawat, S. Limpijumnong, Effects of Mg Local Structure on Mg K-edge XANES Spectra of MgxZn1-xO Alloy: A First-principles Study, Integr Ferroelectr, 156 (2014) 72-78.
    [33] Y.R. Ryu, T.S. Lee, J.A. Lubguban, A.B. Corman, H.W. White, J.H. Leem, M.S. Han, Y.S. Park, C.J. Youn, W.J. Kim, Wide-band gap oxide alloy: BeZnO, Appl Phys Lett, 88 (2006).
    [34] R.K. Gupta, M. Cavas, F. Yakuphanoglu, Structural and optical properties of nanostructure CdZnO films, Spectrochim Acta A, 95 (2012) 107-113.
    [35] E.R. Segnit, A.E. Holland, System Mgo-Zno-Sio2, J Am Ceram Soc, 48 (1965) 409-&.
    [36] I.C. Ho, Y.H. Xu, J.D. Mackenzie, Electrical and optical properties of MgO thin film prepared by sol-gel technique, J Sol-Gel Sci Techn, 9 (1997) 295-301.
    [37] T. Gruber, C. Kirchner, R. Kling, F. Reuss, A. Waag, ZnMgO epilayers and ZnO-ZnMgO quantum wells for optoelectronic applications in the blue and UV spectral region, Appl Phys Lett, 84 (2004) 5359-5361.
    [38] A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, Y. Segawa, MgxZn1-xO as a II-VI widegap semiconductor alloy, Appl Phys Lett, 72 (1998) 2466-2468.
    [39] F. Alema, O. Ledyaev, R. Miller, V. Beletsky, A. Osinsky, W.V. Schoenfeld, Growth of high Mg content wurtzite MgZnO epitaxial films via pulsed metal organic chemical vapor deposition, J Cryst Growth, 435 (2016) 6-11.
    [40] Y.H. Hu, B. Cai, Z.Y. Hu, Y.L. Liu, S.L. Zhang, H.B. Zeng, The impact of Mg content on the structural, electrical and optical properties of MgZnO alloys: A first principles study, Curr Appl Phys, 15 (2015) 423-428.
    [41] S.W. Shin, I.Y. Kim, G.H. Lee, G.L. Agawane, A.V. Mohokar, G.S. Heo, J.H. Kim, J.Y. Lee, Design and Growth of Quaternary Mg and Ga Codoped ZnO Thin Films with Transparent Conductive Characteristics, Cryst Growth Des, 11 (2011) 4819-4824.
    [42] C.-H.W. Yen-Yu Chen, Giin-Shan Chen, Yi-Chang Li, Chuan-Pu Liu, Self-poweredn-MgxZn1-xO/p-Si photodetector improved by alloying-enhanced piezopotential through piezo-phototronic effect, Nano Energy, DOI (2014).
    [43] T.S.E. S.Gateva, Photodetectors, InTech, DOI (2012).
    [44] Y.N. Hou, Z.X. Mei, X.L. Du, Semiconductor ultraviolet photodetectors based on ZnO and MgxZn1-xO, J Phys D Appl Phys, 47 (2014).
    [45] A.K. Sharma, J. Narayan, J.F. Muth, C.W. Teng, C. Jin, A. Kvit, R.M. Kolbas, O.W. Holland, Optical and structural properties of epitaxial MgxZn1-xO alloys, Appl Phys Lett, 75 (1999) 3327-3329.
    [46] H. Zhu, C.X. Shan, L.K. Wang, J. Zheng, J.Y. Zhang, B. Yao, D.Z. Shen, Metal-Oxide-Semiconductor-Structured MgZnO Ultraviolet Photodetector with High Internal Gain, J Phys Chem C, 114 (2010) 7169-7172.
    [47] X.L. Du, Z.X. Mei, Z.L. Liu, Y. Guo, T.C. Zhang, Y.N. Hou, Z. Zhang, Q.K. Xue, A.Y. Kuznetsov, Controlled Growth of High-Quality ZnO-Based Films and Fabrication of Visible-Blind and Solar-Blind Ultra-Violet Detectors, Adv Mater, 21 (2009) 4625-4630.
    [48] D.X. Zhao, Y.C. Liu, D.Z. Shen, Y.M. Lu, J.Y. Zhang, X.W. Fan, Photoluminescence properties of MgxZn1-xO alloy thin films fabricated by the sol-gel deposition method, J Appl Phys, 90 (2001) 5561-5563.
    [49] S.R. Meher, K.P. Biju, M.K. Jain, Effect of post-annealing on the band gap of sol-gel prepared nano-crystalline MgxZn1-xO (0.0 <= x <= 0.3) thin films, J Sol-Gel Sci Techn, 52 (2009) 228-234.
    [50] B.K. Sonawane, M.P. Bhole, D.S. Patil, Effect of magnesium incorporation in zinc oxide films for optical waveguide applications, Physica B, 405 (2010) 1603-1607.
    [51] Z.G. Ju, C.X. Shan, C.L. Yang, J.Y. Zhang, B. Yao, D.X. Zhao, D.Z. Shen, X.W. Fan, Phase stability of cubic Mg0.55Zn0.45O thin film studied by continuous thermal annealing method, Appl Phys Lett, 94 (2009).
    [52] L.K. Wang, Z.G. Ju, J.Y. Zhang, J. Zheng, D.Z. Shen, B. Yao, D.X. Zhao, Z.Z. Zhang, B.H. Li, C.X. Shan, Single-crystalline cubic MgZnO films and their application in deep-ultraviolet optoelectronic devices, Appl Phys Lett, 95 (2009).
    [53] L.K. Wang, Z.G. Ju, C.X. Shan, J. Zheng, B.H. Li, Z.Z. Zhang, B. Yao, D.X. Zhao, D.Z. Shen, J.Y. Zhang, Epitaxial growth of high quality cubic MgZnO films on MgO substrate, J Cryst Growth, 312 (2010) 875-877.
    [54] S. Choopun, R.D. Vispute, W. Yang, R.P. Sharma, T. Venkatesan, H. Shen, Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1-xO alloy films, Appl Phys Lett, 80 (2002) 1529-1531.
    [55] J.Y. Cho, I.K. Kim, I.O. Jung, J.H. Moon, J.H. Kim, Effects of Mg doping concentration on the band gap of ZnO/MgxZn1-xO multilayer thin films prepared using pulsed laser deposition method, J Electroceram, 23 (2009) 442-446.
    [56] Z. Vashaei, T. Minegishi, H. Suzuki, T. Hanada, M.W. Cho, T. Yao, A. Setiawan, Structural variation of cubic and hexagonal MgxZn1-xO layers grown on MgO(111)/c-sapphire, J Appl Phys, 98 (2005).
    [57] D.Y. Jiang, J.Y. Zhang, K.W. Liu, Y.M. Zhao, C.X. Cong, Y.M. Lu, B. Yao, Z.Z. Zhang, D.Z. Shen, A high-speed photoconductive UV detector based on an Mg0.4Zn0.6O thin film, Semicond Sci Tech, 22 (2007) 687-690.
    [58] J.Y. Li, S.P. Chang, H.H. Lin, S.J. Chang, High Responsivity MgxZn1-xO Film UV Photodetector Grown by RF Sputtering, Ieee Photonics Technology Letters, 27 (2015) 978-981.
    [59] H.Y. Lee, M.Y. Wang, K.J. Chang, W.J. Lin, Ultraviolet Photodetector Based on MgxZn1-xO Thin Films Deposited by Radio Frequency Magnetron Sputtering, Ieee Photonics Technology Letters, 20 (2008) 2108-2110.
    [60] Q.H. Zheng, F. Huang, K. Ding, J. Huang, D.G. Chen, Z.B. Zhan, Z. Lin, MgZnO-based metal-semiconductor-metal solar-blind photodetectors on ZnO substrates, Appl Phys Lett, 98 (2011).
    [61] Y.M. Zhao, J.Y. Zhang, D.Y. Jiang, C.X. Shan, Z.Z. Zhang, B. Yao, D.X. Zhao, D.Z. Shen, Ultraviolet Photodetector Based on a MgZnO Film Grown by Radio-Frequency Magnetron Sputtering, Acs Appl Mater Inter, 1 (2009) 2428-2430.
    [62] M.M. Fan, K.W. Liu, Z.Z. Zhang, B.H. Li, X. Chen, D.X. Zhao, C.X. Shan, D.Z. Shen, High-performance solar-blind ultraviolet photodetector based on mixed-phase ZnMgO thin film, Appl Phys Lett, 105 (2014).
    [63] L.K. Wang, Z.G. Ju, C.X. Shan, J. Zheng, D.Z. Shen, B. Yao, D.X. Zhao, Z.Z. Zhang, B.H. Li, J.Y. Zhang, MgZnO metal-semiconductor-metal structured solar-blind photodetector with fast response, Solid State Commun, 149 (2009) 2021-2023.
    [64] Jyun-Yi Li, Sheng-Po Chang, Hung-Hsu Lin, Shoou-Jinn Chang, High Responsivity MgxZn1-xO Film UV Photodetector Growth by RF Sputtering, IEEE PHOTONICS TECHNOLOGY LETTERS, DOI (2015).
    [65] W.Z. Wu, Z.L. Wang, Piezotronic Nanowire-Based Resistive Switches As Programmable Electromechanical Memories, Nano Letters, 11 (2011) 2779-2785.
    [66] X.D. Wang, J. Zhou, J.H. Song, J. Liu, N.S. Xu, Z.L. Wang, Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire, Nano Letters, 6 (2006) 2768-2772.
    [67] J.H. He, C.L. Hsin, J. Liu, L.J. Chen, Z.L. Wang, Piezoelectric gated diode of a single ZnO nanowire, Adv Mater, 19 (2007) 781-+.
    [68] Z.L. Wang, Nanopiezotronics, Adv Mater, 19 (2007) 889-892.
    [69] Wenzhuo Wu, Zhong Lin Wang, Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics, Nature Reviews Materials, DOI (2016).
    [70] Y. Liu, Y. Zhang, Q. Yang, S.M. Niu, Z.L. Wang, Fundamental theories of piezotronics and piezo-phototronics, Nano Energy, 14 (2015) 257-275.
    [71] Z.L. Wang, Progress in Piezotronics and Piezo-Phototronics, Adv Mater, 24 (2012) 4632-4646.
    [72] Q. Yang, X. Guo, W.H. Wang, Y. Zhang, S. Xu, D.H. Lien, Z.L. Wang, Enhancing Sensitivity of a Single ZnO Micro-/Nanowire Photodetector by Piezo-phototronic Effect, Acs Nano, 4 (2010) 6285-6291.
    [73] X.N. Wen, W.Z. Wu, Y. Ding, Z.L. Wang, Piezotronic Effect in Flexible Thin-film Based Devices, Adv Mater, 25 (2013) 3371-3379.
    [74] X. Han, W.M. Du, R.M. Yu, C.F. Pan, Z.L. Wang, Piezo-Phototronic Enhanced UV Sensing Based on a Nanowire Photodetector Array, Adv Mater, 27 (2015) 7963-7969.
    [75] S. Xu, Y. Qin, C. Xu, Y.G. Wei, R.S. Yang, Z.L. Wang, Self-powered nanowire devices, Nature Nanotechnology, 5 (2010) 366-373.
    [76] X. Wang, K. Saito, T. Tanaka, M. Nishio, Q.X. Guo, Lower temperature growth of single phase MgZnO films in all Mg content range, J Alloy Compd, 627 (2015) 383-387.
    [77] X. Wang, K. Saito, T. Tanaka, M. Nishio, T. Nagaoka, M. Arita, Q.X. Guo, Energy band bowing parameter in MgZnO alloys, Appl Phys Lett, 107 (2015).
    [78] S.H. Jang, S.F. Chichibu, Structural, elastic, and polarization parameters and band structures of wurtzite ZnO and MgO, J Appl Phys, 112 (2012).
    [79] A. Schleife, C. Rodl, J. Furthmuller, F. Bechstedt, Electronic and optical properties of MgxZn1-xO and CdxZn1-xO from ab initio calculations, New J Phys, 13 (2011).
    [80] H.Q. Ni, Y.F. Lu, Z.M. Ren, Quasiparticle band structures of wurtzite and rock-salt ZnO, J Appl Phys, 91 (2002) 1339-1343.
    [81] Y.Y. Kim, B.H. Kong, H.K. Cho, Vertically arrayed Ga-doped ZnO nanorods grown by magnetron sputtering: The effect of Ga contents and microstructural evaluation, J Cryst Growth, 330 (2011) 17-21.
    [82] 田民波, 薄膜技術與薄膜材料, 台灣,五南圖書, DOI (2007).
    [83] Y. Zhang, C.H. Liu, J.B. Liu, J. Xiong, J.Y. Liu, K. Zhang, Y.D. Liu, M.Z. Peng, A.F. Yu, A.H. Zhang, Y. Zhang, Z.W. Wang, J.Y. Zhai, Z.L. Wang, Lattice Strain Induced Remarkable Enhancement in Piezoelectric Performance of ZnO-Based Flexible Nanogenerators, Acs Appl Mater Inter, 8 (2016) 1381-1387.
    [84] P.M. Verghese, D.R. Clarke, Surface textured zinc oxide films, J Mater Res, 14 (1999) 1039-1045.
    [85] C.Q. Qin, Y.S. Gu, X. Sun, X.Q. Wang, Y. Zhang, Structural dependence of piezoelectric size effects and macroscopic polarization in ZnO nanowires: A first-principles study, Nano Res, 8 (2015) 2073-2081.
    [86] W.M. Li, H.Y. Hao, Al:ZnO films deposited on flexible transparent polyimide substrate by magnetron sputtering at different substrate temperatures, Optoelectron Adv Mat, 6 (2012) 117-120.
    [87] A.M. Cowley, S.M. Sze, Surface States and Barrier Height of Metal-Semiconductor Systems, J Appl Phys, 36 (1965) 3212-&.
    [88] R.F. Pierret, Semiconductor Device Fundamentals Reading, MA: Addison-Wesley, DOI (1996).
    [89] C. Soci, A. Zhang, B. Xiang, S.A. Dayeh, D.P.R. Aplin, J. Park, X.Y. Bao, Y.H. Lo, D. Wang, ZnO nanowire UV photodetectors with high internal gain, Nano Letters, 7 (2007) 1003-1009.
    [90] Jyun-Yi Li, Sheng-Po Chang, Hung-Hsu Lin, Shoou-Jinn Chang, High Responsivity MgxZn1-xO Film UV Photodetector Grown by RF Sputtering, IEEE PHOTONICS TECHNOLOGY LETTERS, DOI (2015).

    下載圖示 校內:2019-09-01公開
    校外:2019-09-01公開
    QR CODE