| 研究生: |
黃浩然 Huang, Hao-Jan |
|---|---|
| 論文名稱: |
用於智能環境監測的間歇性網路系統之資料新鮮度優化 Data Freshness Optimizations on Networked Intermittent Systems for Smart Environmental Monitoring |
| 指導教授: |
涂嘉恒
Tu, Chia-Heng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 人工智慧科技碩士學位學程 Graduate Program of Artificial Intelligence |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 37 |
| 中文關鍵詞: | 環境監測 、資料新鮮度 、間歇性網路系統 、能源採集 |
| 外文關鍵詞: | Age of information(AoI), data freshness, energy harvesting, networked intermittent systems (NIS), environmental monitoring |
| 相關次數: | 點閱:151 下載:40 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
環境監測通常使用智能資料分析演算法,如機器學習,通過分析環境資料來感知狀態,環境資料由間歇性網絡系統收集並傳遞到中央伺服器進行資料分析程序。由於收集的資料會隨時間變化,因此這些資料發送到中央伺服器的持續時間(稱為資料新鮮度)對於時間敏感的應用程式至關重要,例如空氣污染和廢水監測。雖然間歇性系統由間歇性環境能源供電並廣泛用於環境監測,但具有易於部署和維護成本低的優點,但與能源無關的性質使其難以處理對時間敏感的工作。在本論文中,我們提出了一種離線解決方案來估計傳輸收集到的資料的性能上限,並提出一種在線解決方案來處理間歇性網絡系統上的這些資料。所提出的解決方案通過一系列實驗進行評估,並優於兩種最先進的策略。
Environmental monitoring often uses smart data analysis algorithms, such as machine learning methods, to perceive the status by analyzing the environmental data, which are collected by the networked intermittent systems (NIS) and passed to a central server for the data analysis procedure. As the collected data would vary across time, the durations of these data being sent to the central server (referred to as data freshness) are critical for timing-sensitive applications, e.g., air pollution and wastewater monitoring. While intermittent systems, which are powered by intermittent ambient energy sources and are widely adopted in environmental monitoring, have the advantages of easy deployment with lower maintenance costs, the energy-agnostic nature makes it hard to handle the timing-sensitive works. In this thesis, we propose an offline solution to estimate the upper performance bound for transmitting the collected data and an online solution to handle these data on NIS. The proposed solutions are evaluated with a series of experiments and outperform the two state-of-the-art strategies.
[1] S. Abdelhak, C. S. Gurram, S. Ghosh, and M. Bayoumi. Energy-balancing task allocation on wireless sensor networks for extending the lifetime. In 2010 53rd IEEE
International Midwest Symposium on Circuits and Systems, pages 781–784, 2010.
[2] F. Adamo, F. Attivissimo, C. G. C. Carducci, and A. M. L. Lanzolla. A smart sensor network for sea water quality monitoring. IEEE Sensors Journal, 15(5):2514–2522, 2015.
[3] Kofi Sarpong Adu-Manu, Nadir Adam, Cristiano Tapparello, Hoda Ayatollahi, and Wendi Heinzelman. Energy-harvesting wireless sensor networks (eh-wsns): A review. ACM Trans. Sen. Netw., 14(2), 2018.
[4] Isaac Amundson and Xenofon Koutsoukos. A Survey on Localization for Mobile Wireless Sensor Networks, volume 5801, pages 235–254. 09 2009.
[5] Ahmed Arafa, Jing Yang, Sennur Ulukus, and H. Vincent Poor. Age-minimal transmission for energy harvesting sensors with finite batteries: Online policies, 2019.
[6] B. T. Bacinoglu, E. T. Ceran, and E. Uysal-Biyikoglu. Age of information under energy replenishment constraints. In 2015 Information Theory and Applications Workshop (ITA), pages 25–31, 2015.
[7] S. Bhattacharya, S. Sridevi, and R. Pitchiah. Indoor air quality monitoring using wireless sensor network. In 2012 Sixth International Conference on Sensing Technology (ICST), pages 422–427, 2012.
[8] P. Corke, T. Wark, R. Jurdak, W. Hu, P. Valencia, and D. Moore. Environmental wireless sensor networks. Proceedings of the IEEE, 98(11):1903–1917, 2010.
[9] M. Costa, M. Codreanu, and A. Ephremides. On the age of information in status update systems with packet management. IEEE Transactions on Information Theory, 62(4):1897–1910, 2016.
[10] Francesca De Rossi, Tadeo Pontecorvo, and Thomas M. Brown. Characterization of photovoltaic devices for indoor light harvesting and customization of flexible dye solar cells to deliver superior efficiency under artificial lighting. Applied Energy, 156:413–422, 2015.
[11] S. Farazi, A. G. Klein, and D. R. Brown. Average age of information for status update systems with an energy harvesting server. In IEEE INFOCOM 2018 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pages 112–117, 2018.
[12] Xiaoya Hu, Bingwen Wang, and Han Ji. A wireless sensor network-based structural health monitoring system for highway bridges. Computer-Aided Civil and Infrastructure Engineering, 28(3):193–209, 2013.
[13] Yoshiaki Inoue, Hiroyuki Masuyama, Tetsuya Takine, and Toshiyuki Tanaka. A general formula for the stationary distribution of the age of information and its application to single-server queues. CoRR, abs/1804.06139, 2018.
[14] H. Jayakumar, K. Lee, W. S. Lee, A. Raha, Y. Kim, and V. Raghunathan. Powering the internet of things. In International Symposium on Low Power Electronics and Design (ISLPED), pages 375–380, 2014.
[15] Kavi K. Khedo, Rajiv Perseedoss, and Avinash Mungur. A wireless sensor network air pollution monitoring system. International Journal of Wireless and Mobile Networks, 2(2):31–45, May 2010.
[16] P. Kamalinejad, C. Mahapatra, Z. Sheng, S. Mirabbasi, V. C. M. Leung, and Y. L. Guan. Wireless energy harvesting for the internet of things. Communications Magazine (ComMag), 53(6):102–108, 2015.
[17] S. Kaul, M. Gruteser, V. Rai, and J. Kenney. Minimizing age of information in vehicular networks. In 2011 8th Annual IEEE Communications Society Conference on Sensor,Mesh and Ad Hoc Communications and Networks, pages 350–358, 2011.
[18] S. Kaul, R. Yates, and M. Gruteser. On piggybacking in vehicular networks. In 2011 IEEE Global Telecommunications Conference - GLOBECOM 2011, pages 1–5, 2011.
[19] S. Kaul, R. Yates, and M. Gruteser. Real-time status: How often should one update? In 2012 Proceedings IEEE INFOCOM, pages 2731–2735, 2012.
[20] S. K. Kaul, R. D. Yates, and M. Gruteser. Status updates through queues. In 2012 46th Annual Conference on Information Sciences and Systems (CISS), pages 1–6, 2012.
[21] Harminder Kaur, Dr. Ravinder Singh Sawhney, and Navita Komal. Wireless sensor networks for disaster management. International Journal of Advanced Research in Computer Engineering and Technology, 1:129–134, 07 2012.
[22] André Kurs, Aristeidis Karalis, Robert Moffatt, J. D. Joannopoulos, Peter Fisher, and Marin Soljačić. Wireless power transfer via strongly coupled magnetic resonances. Science, 317(5834):83–86, 2007.
[23] Mohammad Moltafet, Markus Leinonen, and Marian Codreanu. On the age of information in multi-source queueing models. CoRR, abs/1911.07029, 2019.
[24] C. Park and P. H. Chou. Ambimax: Autonomous energy harvesting platform for multisupply wireless sensor nodes. In 2006 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks, volume 1, pages 168–177, 2006.
[25] I. E. Radoi, J. Mann, and D. K. Arvind. Tracking and monitoring horses in the wild using wireless sensor networks. In 2015 IEEE 11th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pages 732–739, 2015.
[26] D. C. Ranasinghe, K. S. Leong, M. L. Ng, D. W. Engels, and P. H. Cole. A distributed architecture for a ubiquitous rfid sensing network. In 2005 International Conference on Intelligent Sensors, Sensor Networks and Information Processing, pages 7–12, 2005.
[27] Johnny Russo, William Ray, and Marc S. Litz. Low light illumination study on commercially available homojunction photovoltaic cells. Applied Energy, 191(C):10–21, 2017.
[28] Jaspreet Singh, Ranjit Kaur, and Damanpreet Singh. Energy harvesting in wireless sensor networks: A taxonomic survey. International Journal of Energy Research, 45(1):118–140, 2021.
[29] J. Michael Steele. The Cauchy-Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities. Cambridge University Press, 2004.
[30] S. Sudevalayam and P. Kulkarni. Energy harvesting sensor nodes: Survey and implications. IEEE Communications Surveys Tutorials, 13(3):443–461, 2011.
[31] Yin Sun, Elif Uysal-Biyikoglu, Roy D. Yates, Can Emre Koksal, and Ness B. Shroff. Update or wait: How to keep your data fresh. CoRR, abs/1601.02284, 2016.
[32] R.J.M. Vullers, R. van Schaijk, I. Doms, C. Van Hoof, and R. Mertens. Micropower energy harvesting. Solid-State Electronics, 53(7):684–693, 2009. Papers Selected from the 38th European Solid-State Device Research Conference–ESSDERC’08.
[33] X. Wu, J. Yang, and J. Wu. Optimal status update for age of information minimization with an energy harvesting source. IEEE Transactions on Green Communications and Networking, 2(1):193–204, 2018.
[34] R. D. Yates. Lazy is timely: Status updates by an energy harvesting source. In 2015 IEEE International Symposium on Information Theory (ISIT), pages 3008–3012, 2015.
[35] Roy D. Yates and Sanjit K. Kaul. The age of information: Real-time status updating by multiple sources. CoRR, abs/1608.08622, 2016.
[36] Roy D. Yates, Yin Sun, D. Richard Brown III au2, Sanjit K. Kaul, Eytan Modiano, and Sennur Ulukus. Age of information: An introduction and survey, 2020.
[37] Z. Zhou, C. Fu, C. J. Xue, and S. Han. Transmit or discard: optimizing data freshness in networked embedded systems with energy harvesting sources. In 2019 56th ACM/IEEE Design Automation Conference (DAC), pages 1–6, 2019.
[38] Z. Zhou, Chenchen Fu, C. Xue, and S. Han. Energy-constrained data freshness
optimization in self-powered networked embedded systems. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 39:2293–2306, 2020.