| 研究生: |
顏凱宸 Yen, Kai-Cheng |
|---|---|
| 論文名稱: |
聚對苯二甲酸庚二酯與其摻合體之多晶態及多重球晶形貌 Polymorphism and Multiple Spherulite Morphologies in Poly(heptamethylene terephthalate) and Its Blends |
| 指導教授: |
吳逸謨
Woo, Eamor M. |
| 共同指導教授: |
田代孝二
Kohji Tashiro |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 聚對苯二甲酸庚二酯 、多晶態 、球晶 |
| 外文關鍵詞: | poly(heptamethylene terephthalate), crystalline memory effect, polymorphism, spherulite |
| 相關次數: | 點閱:78 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用微分掃描卡度計(differential scanning calorimetry)、偏光顯微鏡(polarized optical-light microscopy)、傅立葉轉換紅外線光譜儀(Fourier-transformed infrared spectroscopy)、廣角X光繞射儀(wide-angle X-ray diffractometer)、微傅立葉轉換紅外線光譜儀(Fourier-transformed infrared microspectroscopy)、小角X-光散射儀(small angle X-ray scattering)以及原子力顯微鏡(atomic force microscopy) 探討聚對苯二甲酸庚二酯(poly(heptamethylene terephthalate), PHepT)的多晶態行為、球晶形態、結晶記憶效應對多晶態行為與球晶形態的影響,以及與另ㄧ具有多晶態的聚對苯二甲酸己二酯(poly(hexamethylene terephthalate) (PHT) 摻合後該摻合體的結晶行為。
PHepT於熔融結晶時具有兩種晶態(alpha與beta晶態)且其多晶態行為受到(1) 結晶溫度、(2) 熔融溫度與(3) 熔融態中殘存晶核的晶態(alpha或beta晶核)影響。當熔融溫度低於110oC,且殘存晶核為alpha晶核時, PHepT於所有熔融結晶溫度,皆形成alpha晶態。然而,當使用相同的熔融溫度(110oC), 但殘存晶核為beta晶核時,PHepT於所有的熔融結晶溫度,皆形成alpha晶態與beta晶態共存。相反地,若熔融溫度為150oC並去除所有殘存晶核,PHepT於結晶溫度高於40oC時形成單一beta晶態,結晶溫度低於25oC時,則形成單一alpha晶態,若溫度介於25與40oC之間,則為alpha與beta晶態共存。
完整歸納出PHepT之alpha與beta晶態之結晶條件後,則針對單一alpha與beta晶態進行熱行為分析,並利用線性與非線性Hoffman-Weeks方程式求得兩種晶態的平衡熔點。以線性Hoffman-Weeks方程式得到的平衡熔點略低,分別為98oC (alpha晶態)與100.1oC (beta晶態);以非線性Hoffman-Weeks方程式得到的平衡熔點較高,分別為121oC (alpha晶態)與122.5oC (beta晶態)。PHepT的結晶動力學則利用Avrami與Ozawa兩位學者提出的動力學理論分別針對PHepT的恆溫結晶與非恆溫結晶過程進行探討。當熔融溫度為110oC時,主要為異相成核機制,且於此熔融條件下形成的alpha晶態,結晶速率較快。然而,當熔融溫度為150oC時,主要為單相成核機制,且於此熔融條件下形成的alpha晶態(結晶溫度低於25oC)或beta晶態(結晶溫度高於40oC),結晶速率皆較以異相成核產生的alpha晶態慢。顯示出PHepT的結晶速率主要由成核機制及結晶溫度控制,而不與晶態相關。PHepT形成共六種球晶形貌(Ring Type-I,-II,-III以及Maltese-cross Type-1,-2,-3)。經光譜分析與熱分析鑑定出Ring Type-I, Maltese-cross Type-1 及-3為beta晶態,而Ring Type-II,-III及Maltese-cross Type-2為alpha晶態。
另ㄧ具有多晶態的高分子PHT摻入PHepT後,PHT與PHepT形成的摻合體為一相容系統。形成相容摻合系統後,兩高分子的多晶態行為皆受到影響,PHT中熱力學穩定性較高的beta晶態比例隨著PHepT組成增加而增加。而PHepT則由多晶態行為轉變為僅有單一beta晶態存在。此外,當PHepT的組成高於50 wt%後,PHT中原本為樹枝狀結晶形態的beta晶態轉變為具有環狀消光環的球晶形態。而於此相容系統中,PHepT存在的位置經小角X-光散射證明為大部分位於PHT晶板之間。
Polymorphism and spherulite morphology in association with crystalline memory effect of poly(heptamethylene terephthalate) (PHepT) were probed using differential scanning calorimetry (DSC), Fourier-transformed infrared (FTIR) spectroscopy, wide-angle X-ray diffraction (WAXD), Fourier-transformed infrared microspectroscopy (micro-FTIR), polarized optical-light microscopy (POM), small-angle X-ray scattering (SAXS) and atomic force microscopy (AFM).
PHepT exhibits two crystal types (alpha and beta form) upon crystallization at various isothermal melt-crystallization temperatures (Tc) by quenching from different Tmax (maximum temperature above Tm for melting the original crystals). PHepT is preferentially crystallized into sole alpha crystal with crystalline memory effect of the residual alpha crystal when melted at a lower Tmax=110oC or at low crystallization temperature (25oC) quenched from Tmax=150oC which is high enough to erase all previous crystals. In contrast, the beta crystal is crystallized at Tc higher than 40oC quenched a high Tmax (150oC). However, a mixture of alpha and beta crystal is crystallized at all Tc’s quenched from a low Tmax of 110oC with residual beta nuclei.
The equilibrium melting temperatures (Tmo) of the alpha and beta crystal of PHepT were determined using both linear and nonlinear Hoffman-Weeks methods. Tmo of the beta crystal determined from linear and nonlinear Hoffman-Weeks methods are 101oC and 122.5oC, respectively, which are both higher than those of the alpha crystal. Tmo of the alpha crystal determined from linear and nonlinear Hoffman-Weeks methods are 98oC and 121oC, respectively. Kinetics of the alpha and beta crystal was compared using Avrami and Ozawa theory. The crystallization of the alpha crystal quenched from a low Tmax=110oC is of a heterogeneous nucleation mechanism and a two-dimensional growth. However, the crystallization of the beta crystal is of a homogeneous nucleation mechanism and a two-dimensional growth.
PHepT exhibits as many as six types of spherulite morphology (Maltese-cross Type-1, -2, -3 and Ring Type-I, -II, -III) packed of different polymorphic crystal cells. Correlations between polymorphic crystal cells and multiple spherulite types in PHepT were analyzed using thermal and spectroscopic analysis. Ring Type-I, Maltese-cross Type-1 and Maltese-cross Type-3 spherulites are packed of the sole beta crystal, while Ring Type-II, Ring Type-III Maltese-cross Type-2 are attributed to the sole alpha crystal.
Mutual blending effect of a polymorphic polyester, poly(hexamethylene terephthalate) (PHT), with PHepT on the polymorphic and spherulite morphology of PHepT and PHT was then determined. The fraction of the thermodynamically stable beta crystal of PHT in the blend increases with increasing PHepT content when melt-crystallized at 100oC. In addition, when blended with PHT, the crystal stability of PHepT is altered and leads to that the originally polymorphic PHepT exhibits only the beta crystal when melt-crystallized at all Tc’s. Apart from the noted polymorphism behavior, miscibility in the blend also shows great influence on the spherulite morphology of PHT crystallized at 100oC, in which the dendritic morphology corresponding to the beta crystal of PHT changes to the ring-banded in the blend with higher than 50wt% PHepT.
[1] Liu, J.; Geil, P. H. J. Macromol Sci Phys B36, 61 (1997).
[2] Desborough, I. J.; Hall, I. H.; Neisser, J. Z. Polymer 20, 545 (1979).
[3] Poulin-Dandurand, S.; Perez, S.; Revol, J. F.; Briss, F. Polymer 20, 419 (1979).
[4] Jakeways, R.; Ward, I. M.; Wilding, M. A.; J Polym Sci Polym Phys Ed 13, 799 (1975)
[5] Song, K. J. J Appl Polym Sci 78, 412 (2000).
[6] Yokouchi, M.; Sakakibara, Y.; Chatani, Y.; Tadokoro, H.; Tanaka, T.; Yoda, K. Macromolecules 9, 266 (1976).
[7] Mencik, Z. J Polym Sci Polym Phys Ed 13, 2173 (1975).
[8] Hall, I. H.; Pass, M. G. Polymer 17, 807 (1976).
[9] Desborough, I. J.; Hall, I. H. Polymer 18, 825 (1977).
[10] Ward, I. M.; Wilding, M. A. Polymer 18, 327 (1977).
[11] Breseton, M. G.; Davies, G. R.; Jakeways, R.; Ward, I. M. Polymer 19, 17 (1978).
[12] Tashiro, K.; Nakai, Y.; Kobayashi, M.; Tadokoro, H. Macromolecules 13, 137 (1980).
[13] Apostolov, A. A.; Fakirov, S.; Stamm, M.; Patil, R. D.; Mark, J. E. Macromolecules 33, 6856 (2000).
[14] Hall, I. H.; Pass, M. G.; Rammo, N. N. J Polym Sci Polym Phys Ed 16, 1409 (1978).
[15] Hall, I. H.; Rammo, N. N. J Polym Sci Polym Phys Ed 16, 2189 (1978).
[16] Hall, I. H. “Structure of Crystalline Polymers”, Elsevier, London, p 39 (1984).
[17] Tadokoro, H.; Chatani, Y.; Kusuyama, H.; Yokouchi, M.; Sakakibara, Y.; Takase, M. Higashihata, Y.; Tseng, H. Polym Prepr Jpn 28, 1958 (1979).
[18] Hall, I. H.; Ibrahim, B. A. Polymer 23, 805 (1982).
[19] Palmer, A.; Poulin-Dandurand, S.; Revol, J. F.; Brisse, F. Eur Polym J 20, 783 (1984).
[20] Brisse, F.; Palmer, A.; Moss, B.; Dorset, D.; Roughead, W. A.; Miller, D. P. Eur Polym J 20, 791 (1984).
[21] Bateman, J.; Richards, R. E.; Farrow, G.; Ward, I. M. Polymer 1, 63 (1960).
[22] Joly, A. M.; Nemoz, G.; Douillard, A.; Vallet, G. Makromol Chem 176, 479 (1975).
[23] Kawahara, Y.; Naruko, S.; Nakayama, A.; Wu, M. C.; Woo, E. M. Tsuji, M. J Mater Sci 44, 2137 (2009).
[24] Kawahara, Y.; Naruko, S.; Nakayama, A.; Wu, M. C.; Woo, E. M. Tsuji, M. J Mater Sci 44, 4705 (2009).
[25] Jeong, Y. G.; Lee, S. C.; Shin, K. J Polym Sci Polym Phys 47, 276 (2009).
[26] Reiter, G.; Sommer, J. U. “Polymer Crystallization: Observations, Concepts, and Interpretation”, Springer, New York (2003).
[27] Wunderlich, B. “Macromolecular physics”, Academic Press, New York, Volume 2 (1931).
[28] Woo, E. M.; Sun, Y. S.; Yang, C. P. Prog Polym Sci 26, 945 (2001).
[29] Ho, R. M.; Lin, C. P.; Tsai, H. Y.; Woo, E. M. Macromolecules 33, 6517 (2000).
[30] Sun, Y. S.; Woo, E. M. Macromolecules 32, 7836 (1999).
[31] Li, Y. Y.; He, J. S.; Qiang, W.; Hu, X. Polymer 43, 2489 (2001).
[32] Chiu, F. C.; Peng, C. G.; Fu, Q. Polym Eng Sci 40, 2397 (2000)
[33] Su, C. H.; Chen, S. H.; Su, A. C.; Tsai, C. J Polym Res 11, 293 (2004).
[34] Sorrentino, A.; Pantani, R.; Titomanlio, G. J Polym Sci Polym Phys 45, 196 (2007).
[35] Wu, M. C.; Woo, E. M. Polym Int 54, 1681 (2005).
[36] Fillon, B.; Wittmann, I. C.; Lotz, B.; Thierry, A. J Polym Sci Polym Phys 31, 1383 (1993).
[37] Fillon, B.; Lotz, B.; Thierry, A.; Wittmann, I. C. J Polym Sci Polym Phys 31, 1395 (1993).
[38] Fillon, B.; Thierry, A.; Wittmann, I. C.; Lotz, B. J Polym Sci Polym Phys 31, 1407 (1993).
[39] Cho, K. W.; Nabi Saheb, D.; Yang, H. C.; Kang, B. I.; Kim, J. K.; Lee, S. S. Polymer 44, 4053 (2003).
[40] Cho, K. W.; Nabi Saheb, D.; Choi, J.; Yang, H. C. Polymer 43, 1407 (2003).
[41] Turner Jones, A.; Aizlewood, J. M.; Beckett, D. R. Makromol Chem 75, 134 (1964).
[42] Addink, E. J.; Bientema, J. Polymer 2, 185 (1961)
[43] Padden Jr, F. J.; Keith, H. D. J Appl Phys 30, 1479 (1959).
[44] Fujiwara, Y. Colloid Polym Sci 253, 273 (1975).
[45] Fujiwara, Y. Colloid Polym Sci 265, 1027 (1987).
[46] Lovinger, A. J.; Chua, J. O.; Gryte, C. C. J Polym Sci Polym Phys Ed 15, 641 (1977).
[47] Karger-Kocsis, J. Polym Bull 36, 119 (1996).
[48] Karger-Kocsis, J. Polym Eng Sci 36, 306, 1996.
[49] Jacoby, P.; Bersted, B. H.; Kissel, W. J.; Smith, C. E. J Polym Sci Polym Phys Ed 24, 461 (1986).
[50] Lotz, B.; Wittmann, J. C.; Lovinger, A. J. Polymer 37, 4979 (1996).
[51] Garbarczyk, J. Makromol Chem 186, 145 (1985).
[52] Lotz, B.; Wittmann, J. C. J Polym Sci Polym Phys Ed 24, 1541 (1986).
[53] Supaphol, P.; Spruiell, J. E. J Appl Polym Sci 75, 337 (1999).
[54] Supaphol, P.; Lin, J. S. Polymer 42, 9617 (2001).
[55] Mamun, A.; Umemoto, S.; Okui, N. Macromolecules 40, 6296 (2007).
[56] Maus, A.; Hempel, E.; Thurn-Albrecht, T.; Saalwächter, K. Eur Phys J E23, 91 (2007).
[57] Zheng, K.; Liu, R. G.; Chang, H. B.; Shen, D. Y.; Huang, Y. Polymer 50, 5782 (2009).
[58] Mamun, A.; Umemoto, S.; Ishihara, N.; Okui, N. Polymer 47, 5531 (2006).
[59] De Candia, F.; Ruvolo Filho, A.; Vittoria, V. Colloid Polym Sci 269, 650 (1991).
[60] Vittoria, V. J Macromol Sci Phys B29, 411 (1990).
[61] Vittoria, V.; Ruvolo Filho, A.; De Candia, F. J Macromol. Sci. Phys. B8, 419 (1989).
[62] Sun, Y. S.; Woo, E. M. Polymer 42, 2241 (2001).
[63] Woo, E. M.; Sun, Y. S.; Lee, M. L. Polymer 40, 4425 (1999).
[64] De Rosa, C.; Guerra, G.; Petraccone, V.; Corradini, P. Polym J 23, 1435 (1991).
[65] De Rosa, C.; Rapacciuolo, M.; Guerra, G.; Petraccone, V.; Corradini, P. Polymer 33, 1423 (1992).
[66] Gomez, M. A.; Tonelli, A. E. Macromolecules 24, 3533 (1991).
[67] De Rosa, C. Macromolecules 29, 8460 (1996).
[68] Chatani, Y.; Shimane, Y.; Ijitsu, T.; Yukinari, T. Polymer 34, 1625 (1993).
[69] Guerra, G.; Musto, P.; Karasz, F. E.; Macknight, W. J Macromol Chem 191, 2111 (1990).
[70] Zimba, C. G.; Rabolt, J. F.; English, A. D. Macromolecules 22, 2867 (1989).
[71] Reynolds, N. M.; Stidham, H. D.; Hsu, S. L. Macromolecules 242, 215 (1991).
[72] Sun, Y. S.; Wang, C.; Woo, E. M. J Polym Res 8, 59 (2001).
[73] Sun, Y. S.; Wu, M. C.; Ho, R. M.; Woo, E. M. Macromolecules 36, 8415 (2003).
[74] Sun, Y.S.; Wu, M. C.; Woo, E. M. Macromol Chem Phys 204, 1547 (2003).
[75] Sun, Y. S.; Wu, M. C.; Ho, R. M.; Woo, E. M. Polymer 44, 5293 (2003).
[76] Woo, E. M.; Wu, F. S. Macromol Chem Phys 199, 2041 (1998).
[77] Bhoje Gowd, E.; Tashiro, K.; Ramesh, C. Prog Polym Sci 34, 280 (2009).
[78] Woo, E. M.; Wu, M. C. J Polym Sci Polym Phys 43, 1662 (2005).
[79] Gan, Z.; Abe, H.; Doi, Y. Macromol Chem Phys 203, 2369 (2002).
[80] Gan, Z.; Kuwabara, K.; Abe, H.; Iwata, T.; Doi, Y. Biomacromolecules 5, 371 (2004).
[81] Stein, R. S.; Khambatta, F. B.; Warner, F. P.; Russell, T.; Escala, A.; Balizer, E. J Polym Sci Polym Symp 63, 313 (1978).
[82] Chen, H. L.; Wang, S. F. Polymer 41, 5157 (2000).
[83] Liu, L. Z.; Chu, B.; Penning, J. P.; John Manley, R. S. Macromolecules 30, 4398 (1997).
[84] Cheung, Y. W.; Stein, R. S.; Wignall, G. D.; Yang, H. E. Macromolecules 26, 5365 (1993).
[85] Cheung, Y. W.; Stein, R. S.; Chu, B.; Wu, G. Macromolecules 27, 3589 (1994).
[86] Kuo, Y. H.; Woo, E. M. Polym J 35, 236 (2003).
[87] Fakirov, S.; Evstatiev, M.; Petrovich, S. Macromolecules 26, 5219 (1993).
[88] Woo, E. M.; Kuo, Y. H. J Polym Sci Polym Phys 41, 2394 (2003).
[89] Yen, K. C.; Woo, E. M.; Chen, Y. F. Polym J 39, 935 (2007).
[90] Yen, K. C.; Woo, E. M. Polym Int 58, 1380 (2009).
[91] Ghosh, A. K.; Woo, E. M.; Sun, Y. S.; Lee, L. T.; Wu, M. C. Macromolecule 38, 4780 (2005).
[92] Woo, E. M.; Wu, P. L.; Chiang, C. P.; Liu, H. L. Macromol Rapid Commun 25, 942 (2004).
[93] Yen, K. C.; Woo, E. M. Polymer 50, 662 (2009).
[94] Yen, K. C.; Woo, E. M. J Polym Sci Polym Phys 47, 1839 (2009)..
[95] Lee, J. K.; Choi, M. J.; Im, J. E.; Hwang, D. J.; Lee, K. H. Polymer 48, 2980 (2007).
[96] Woo, E. M.; Wu, P. L. Colloid Polym Sci 284, 357 (2006).
[97] Chen, Y. F.; Woo, E. M. Colloid Polym Sci 286, 917 (2008).
[98] Yen, K. C.; Mandal, T. K.; Woo, E. M. J Biomed Mat Res Part A 86, 701 (2008).
[99] Woo, E. M.; Chang, C. S.; Wu, M. C. Mater Lett 61, 3542 (2007).
[100] Woo, E. M.; Chou, Y. H.; Chiang, W. J.; Chen, I. T.; Huang, I. H.; Kuo, N. T. Polym J 42, 391 (2010)
[101] Yen. K. C.; Woo, E. M. Polym Bull 62, 225 (2009).
[102] Lin, J. H.; Woo, E. M.; Huang, Y. P. J Polym Sci Polym Phys 44, 3357 (2006).
[103] Wu, L.; Lisowski, M.; Talibuddin, S.; Runt, J. Macromolecules 32, 1576 (1999).
[104] Huang, Y. P.; Woo, E. M. Polymer 42, 6493 (2001).
[105] Zheng, H.; Zheng, S.; Guo, Q. J Polym Sci Polym Chem 35, 3169 (1997).
[106] Paternostre, L.; Damman, P.; Dosiere, M. J Polym Sci Polym Phys 37, 1197 (1999).
[107] Marentette, J. M.; Brown, G. R. Polymer 39, 1415 (1998).
[108] Hoffman, J. D.; Davis, G. T.; Lauritzen, J. I. “In Treatise on Solid State Chemistr’’, Vol. 13, Plenum Press, New York (1976).
[109] Flory, P. J.; Vrij, A. J.; Am Chem Soc 85, 3548 (1963).
[110] Hoffman, J. D.; Weeks, J. J. J Res Nat Bur Stand 66A, 13 (1962).
[111] Hoffman, J. D.; Miller, R. L. Polymer 38, 3151 (1997).
[112] Marand, H.; Xu, J.; Srinivas, S. Macromolecules 31, 8219 (1998).
[113] Xu, J.; Srinivas, S.; Marand, H.; Agarwal, P. Macromolecules 31, 8230 (1998)
[114] Keith, H. D.; Padden Jr., F. J. J Appl Phys 35, 1286 (1964).
[115] Keith, H. D.; Padden Jr., F. J. J Appl Phys 35, 1270 (1964).
[116] Keith, H. D.; Padden Jr., F. J. J Appl Phys 34, 2409 (1963).
[117] Phillips, P. J. Rep Prog Phys 53, 549 (1990).
[118] Armistead, K.; Goldbeck-Wood, G. Adv Polym Sci 100, 219 (1992).
[119] Lauritzen, J. I.; Hoffman, J. D. J Res Nat Bur Std 64A, 73 (1960).
[120] Hoffman, J. D.; Miller, R. L. Macromolecules 21, 3038 (1988).
[121] Reiter, G.; Strobl, G. “Progress in Understanding of Polymer Crystallization’’, Springer, New York (2007).
[122] Sanchez, I. C.; DiMarzio, E. A. J Chem Phys 55, 893 (1971).
[123] Avrami, M. J Chem Phys 9, 177 (1941).
[124] Avrami, M. J Chem Phys 8, 212 (1940).
[125] Avrami, M. J Chem Phys 7, 1103 (1939).
[126] Sperling, L. H. “Introduction to Physical Polymer Science’’ Wiley Interscience, New York (1932).
[127] Ozawa, T. Polymer 12, 150 (1971).
[128] Strobl, G. “The Physics of Polymers: Concepts for Understanding their Structures and Behavior’’, Springer, New York (1996).
[129] Gilbert, M.; Hybart, F. Polymer 13, 327 (1972).
[130] Wunderlich, B. “Macromolecular Physics”, vol. 3. Academic Press, New York (1976).
[131] Liu, T.; Petermann, J. Polymer 42, 6453 (2001).
[132] Pengju, P.; Weihua, K.; Bo, Z.; Tungalag, D.; Yashio, I. Macromolecules 40, 6898 (2007).
[133] Wu, P. L.; Woo, E. M. J Polym Sci Part Polym Phys 41, 80 (2003).
[134] Medellín-Rodríguez, F. J.; Phillips, P. J.; Lin, J. S. Macromolecules 29, 7491 (1996).
[135] Liu, T. X.; Petermann, J.; He, C. B.; Liu, Z. H.; Chung, T. S. Macromolecules 34, 4305 (2001).
[136] Cheng, S. Z. D.; Cao, M. Y.; Wunderlich, B. Macromolecules 19, 1868 (1986).
[137] Sun, Y. S.; Woo, E. M. Macromol Chem Phys 202, 1557 (2001).
[138] Hu, Y.; Zhang, J. M.; Sato, H.; Noda, I.; Ozaki, Y. Polymer 48, 4777 (2007).
[139] Illers, K. H. Eur Polym J 10, 911 (1974).
[140] Rim, P. B.; Runt, J. P. Macromolecules 17, 1520 (1984).
[141] Sohn, S.; Alizade, A.; Marand, H. Polymer 41, 8879 (2000).
[142] Shi, Y.; Jabarin, S. A. J Appl Polym Sci 81, 11 (2001).
[143] Mehta, A.; Gaur, U.; Wunderlich, B. J Polym Sci Polym Phys Ed 16, 289 (1978).
[144] Pyda, M.; Boller, A.; Grebowicz, J.; Chuah, H.; Lebedev, B. V.; Wunderlich, B. J Polym Sci Polym Phys 36, 2499 (1998).
[145] Huang, J. M.; Chang, F. C. J Polym Sci Polym Phys 38, 934 (2000).
[146] Gonzales, C. C.; Perena, J. M.; Bello, A. J Polym Sci Polym Phys 26, 1397 (1988).
[147] Pompe, G.; Häubler, L.; Winter, W. J Polym Sci Polym Phys 34, 211 (1996).
[148] Kim, H. G.; Robertson, R. E. J Polym Sci Polym Phys 36, 133 (1998).
[149] Shaeb, D. N.; Jog, J. P. J Polym Sci Polym Phys 37, 2439 (1999).
[150] Wu, P. L.; Woo, E. M. J Polym Sci Polym Phys 42, 1265 (2004).
[151] Hong, P. D.; Chung, W. T.; Hsu, C. F. Polymer 43, 3335 (2002).
[152] Chen, Y. F.; Woo, E. M.; Li, S. H. Langmuir 24, 11880 (2008).
[153] Stein, R. S.; Misra, A. J Polym Sci Polym Phys Ed 18, 327 (1980).
[154] Roche, E. J.; Stein, R. S.; Thomas, E. L. J. Polym Sci Polym Phys Ed 18, 1145 (1980).
[155] Strobl, G. R.; Schenider, M. J Polym Sci Polym Phys Ed 18, 1343 (1980).
[156] Van Krevelen, D. W. “Properties of polymers”, 3rd edition. Amsterdam: Elsevier, London (1990).
[157] Penning, J. P.; John Manley R. S. Macromolecules 29, 84 (1996).
[158] Campbell, D.; White, J. R. “Polymer characterization: physical techniques”, Chapman & Hall (1989).
[159] Sun, Y. S. Polymer 47, 8032 (2006).