研究生: |
許展榕 Xu, Zhan-Rong |
---|---|
論文名稱: |
應用混合高階剪切變形理論之強型式和弱型式數學方程式於功能性梁之熱彈耦合靜力分析 Strong and Weak Formulations of a Mixed Higher-order Shear Deformation Theory for a Coupled Thermo-elastic Analysis of Functionally Graded Beams |
指導教授: |
吳致平
Wu, Chih-Ping |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 34 |
中文關鍵詞: | 熱彈耦合分析 、有限元素法 、功能性梁 、分層梁理論 、靜力分析 、強型式與弱型式數學方程式 |
外文關鍵詞: | coupled thermo-mechanical analyses, finite element methods, functionally graded beams, layer-wise beam theories, static, strong and weak formulations |
相關次數: | 點閱:66 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文推衍混合分層(Layerwise, LW)高階剪切變形理論(Higher-Order Shear Deformation Theory, HSDT)的強型式與弱型式數學方程式,進行在各種邊界條件束制下,功能性梯度(Functionally Graded, FG)梁承受熱彈載重下的靜力分析。文中假設FG梁的材料性質與厚度方向上各成分材料的體積比率相關,並使用二相材料混合法則(The Rule of Mixtures)計算其有效材料參數。
數值範例結果顯示,混合LW HSDT 在熱彈耦合分析中的解與文獻中提供的精確解非常吻合。文中亦討論FG梁在各種不同參數下其熱彈耦合分析的結果,包括長寬比、材料體積組成比率和不同的邊界條件。
The strong and weak formulations of a mixed layer-wise (LW) higher-order shear deformation theory (HSDT) are developed for the static analysis of functionally graded (FG) beams under various boundary conditions subjected to thermo-mechanical loads. The material properties of the FG beam are assumed to obey a power-law distribution of the volume fractions of the constituents through the thickness of the FG beam, for which the effective material properties are estimated using the rule of mixtures, or it is directly assumed that the effective material properties of the FG beam obey an exponential function distribution along the thickness direction of the beam. The results shown in the numerical examples indicate that the mixed LW HSDT solutions for elastic and thermal field variables are in excellent agreement with the accurate solutions available in the literature. A parametric study related to various effects on the coupled thermo-mechanical behavior of FG beams is carried out, including the aspect ratio, the material-property gradient index, and different boundary conditions.
1. Carrera, E. Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking. Arch. Comput. Methods Eng. 2003, 10, 215-296.
2. Carrera, E.; Filippi, M.; Zappino, E. Laminated beam analysis by polynomial, trigonometric, exponential and zig-zag theories. Eur. J. Mech. A/Solids 2013, 41, 58-69.
3. Davalos, J.F.; Kim, Y.; Barbero, E.J. Analysis of laminated beams with a layer-wise constant shear theory. Compos. Struct. 1994, 28, 241-253.
4. Filippi, M.; Carrera, E. Bending and vibrations analyses of laminated beams by using a zig-zag-layer-wise theory. Compos. Part B 2016, 98, 269-280.
5. Giunta, G; Crisafulli, D.; Belouettar, S.; Carrera, E. A thermo-mechanical analysis of functionally graded beams via hierarchical modelling. Compos. Struct. 2013, 95, 676-690.
6. Koizumi, M. Recent progress of functionally graded materials in Japan. Ceram. Eng. Sci. Proc. 1992, 13, 333-347.
7. Koizumi, M. FGM activities in Japan. Compos. Part B 1997, 28, 1-4.
8. Karama, M.; Afaq, K.S.; Mistou, S. Mechanical behavior of laminated composite beam by the new multi-layered laminated composite structure model with transverse shear continuity. Int. J. Solids Struct. 2003, 40, 1525-1546.
9. Lü, C.F.; Chen, W.Q.; Xu, R.Q.; Lim, C.W. Semi-analytical elasticity solutions for bi-directional functionally graded beams. Int. J. Solid Struct. 2008, 45, 258-275.
10. Li, X.F.; Wang, B.L.; Han, J.C. A higher-order theory for static and dynamic analyses of functionally graded beams. Arch. Appl. Mech. 2010, 80, 1197-1212.
11. Liew, K.M.; Pan, Z.Z.; Zhang, L.W. An overview of layerwise theories for composite laminates and structures: Development, numerical implementation and application. Compos. Struct. 2019, 216, 240-259.
12. Miyamoto, Y.; Kaysser, W.A.; Rabin, B.H; Kawasaki, A.; Ford, R.G. Functionally Graded Materials: Design, Processing, and Applications. New York, Springer, 1999.
13. Mantari, J.L.; Oktem, A.S.; Soares, C.G. A new trigonometric layerwise shear deformation theory for the finite element analysis of laminated composite and sandwich plates. Comput. Struct. 2012, 94-95, 45-53.
14. Nguyen, T.K.; Vo, T.P.; Nguyen, B.D.; Lee, J. An analytical solution for buckling and vibration analysis of functionally graded sandwich beams using a quasi-3D shear deformation theory. Compos. Struct. 2016, 156, 238-252.
15. Reddy, J.N. A simple higher-order theory for laminated composite plates. J. Appl. Mech. 1984, 51, 745-752.
16. Reddy, J.N.; Chin, C.D. Thermomechanical analysis of functionally graded cylinders and plates. J. Therm. Stresses 1998, 21, 593-626.
17. Reddy, J.N. Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, Boca Raton, CRC Press, 2003.
18. Soldatos, K. A transverse shear deformation theory for homogeneous monoclinic plates. Acta Mech. 1992, 94, 195-220.
19. Sankar, B.V. Thermal stresses in functionally graded beams. AIAA J. 2002, 40, 1228-1232.
20. Shen, H.S. Functionally Graded Materials: Nonlinear Analysis of Plates and Shells. Boca Raton, CRC Press, 2009.
21. Simsek, M. Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories. Nucl. Eng. Des. 2010, 240, 697-705.
22. Sharma, N.K.; Bhandari, M. Review of sandwich beams with functionally graded core. Int. J. Innov. Sci. Eng. Technol. 2014, 1, 75-83.
23. Sayyad, A.S.; Ghugal, Y.M. Modeling and analysis of functionally graded sandwich beams: A review. Mech. Adv. Mater. Struct. 2019, 26, 1776-1795.
24. Touratier, M. An efficient standard plate theory. Int. J. Eng. Sci. 1991, 29, 901-916.
25. Thai, H.T.; Vo, T.P. Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories. Int. J. Mech. Sci. 2012, 62, 57-66.
26. Trinh, L.C.; Vo, T.P.; Thai, H.T.; Nguyen, T.K. An analytical method for the vibration and buckling of functionally graded beams under mechanical and thermal loads. Compos. Part B 2016, 100, 152-163.
27. Vo, T.P.; Thai, H.T.; Nguyen, T.K.; Inam, F.; Lee, J. Static behavior of functionally graded sandwich beams using a quasi-3D theory. Compos. Part B 2015, 68, 59-74.
28. Vo, T.P.; Thai, H.T.; Nguyen, T.K.; Inam, F.; Lee, J. A quasi-3D theory for vibration and buckling of functionally graded sandwich beams. Compos. Struct. 2015, 119, 1-12.
29. Wu, C.P.; Kuo, H.C. Interlaminar stresses analysis for laminated composite plates based on a local high order lamination theory. Compos. Struct. 1992, 20, 237-247.
30. Wu, C.P.; Kuo, H.C. An interlaminar stress mixed finite element method for the analysis of thick laminated composite plates. Compos. Struct. 1993, 24, 29-42.
31. Yang, Y.; Pagani, A.; Carrera, E. Exact solutions for free vibration analysis of laminated, box and sandwich beams by refined layer-wise theory. Compos. Struct. 2017, 175, 28-45.